cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A019827 Decimal expansion of sin(Pi/10) (angle of 18 degrees).

Original entry on oeis.org

3, 0, 9, 0, 1, 6, 9, 9, 4, 3, 7, 4, 9, 4, 7, 4, 2, 4, 1, 0, 2, 2, 9, 3, 4, 1, 7, 1, 8, 2, 8, 1, 9, 0, 5, 8, 8, 6, 0, 1, 5, 4, 5, 8, 9, 9, 0, 2, 8, 8, 1, 4, 3, 1, 0, 6, 7, 7, 2, 4, 3, 1, 1, 3, 5, 2, 6, 3, 0, 2, 3, 1, 4, 0, 9, 4, 5, 1, 2, 2, 4, 8, 5, 3, 6, 0, 3, 6, 0, 2, 0, 9, 4, 6, 9, 5, 5, 6, 8
Offset: 0

Views

Author

Keywords

Comments

Decimal expansion of cos(2*Pi/5) (angle of 72 degrees).
Also the imaginary part of i^(1/5). - Stanislav Sykora, Apr 25 2012
One of the two roots of 4x^2 + 2x - 1 (the other is the sine of 54 degrees times -1 = -A019863). - Alonso del Arte, Apr 25 2015
This is the height h of the isosceles triangle in a regular pentagon inscribed in a unit circle, formed by a diagonal as base and two adjacent radii. h = cos(2*Pi/5) = sin(Pi/10). - Wolfdieter Lang, Jan 08 2018
Quadratic number of denominator 2 and minimal polynomial 4x^2 + 2x - 1. - Charles R Greathouse IV, May 13 2019
Largest superstable width of the logistic map (see Finch). - Stefano Spezia, Nov 23 2024

Examples

			0.30901699437494742410229341718281905886015458990288143106772431135263...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Sections 1.9 and 8.19, pp. 66, 535.

Crossrefs

Programs

Formula

Equals (sqrt(5) - 1)/4 = (phi - 1)/2 = 1/(2*phi), with phi from A001622.
Equals 1/(1 + sqrt(5)). - Omar E. Pol, Nov 15 2007
Equals 1/A134945. - R. J. Mathar, Jan 17 2021
Equals 2*A019818*A019890. - R. J. Mathar, Jan 17 2021
Equals Product_{k>=1} 1 - 1/(phi + phi^k), where phi is the golden ratio (A001622) (Ohtsuka, 2018). - Amiram Eldar, Dec 02 2021
Equals Product_{k>=1} (1 - 1/A055588(k)). - Amiram Eldar, Nov 28 2024
Equals A094214/2 = 1-A187798 = A341332/Pi = (A377697-2)/3. - Hugo Pfoertner, Nov 28 2024
This^2 + A019881^2 = 1. - R. J. Mathar, Aug 31 2025

A019845 Decimal expansion of sine of 36 degrees.

Original entry on oeis.org

5, 8, 7, 7, 8, 5, 2, 5, 2, 2, 9, 2, 4, 7, 3, 1, 2, 9, 1, 6, 8, 7, 0, 5, 9, 5, 4, 6, 3, 9, 0, 7, 2, 7, 6, 8, 5, 9, 7, 6, 5, 2, 4, 3, 7, 6, 4, 3, 1, 4, 5, 9, 9, 1, 0, 7, 2, 2, 7, 2, 4, 8, 0, 7, 5, 7, 2, 7, 8, 4, 7, 4, 1, 6, 2, 3, 5, 1, 9, 5, 7, 5, 0, 8, 5, 0, 4, 0, 4, 9, 8, 6, 2, 7, 4, 1, 3, 3, 5
Offset: 0

Views

Author

Keywords

Comments

This sequence is also decimal expansion of cosine of 54 degrees. - Mohammad K. Azarian, Jun 29 2013
The ratio of side to longer diagonal for any golden rhombus (see A019881). - Rick L. Shepherd, Apr 10 2017
Perimeter length of a regular pentagon with circumscribed unit circle. - R. J. Mathar, Aug 24 2023

Examples

			sin 36 degrees = 0.587785252292473129168705954639...
		

Crossrefs

Cf. A019827 (sine of 18 degrees), A019881 (sine of 72 degrees), A001622 (golden ratio phi). A182007.

Programs

Formula

sin 36 degrees = sin Pi/5 radians = sqrt((1/8)(5 - sqrt(5))) = sqrt(A187798/2).
Equals A019881/A001622. - Rick L. Shepherd, Apr 10 2017
This constant is (1/2)*A182007. - Wolfdieter Lang, May 08 2018
Equals 2*A019827*A019881. - R. J. Mathar, Jan 17 2021
Equals 5*A182007. - R. J. Mathar, Aug 24 2023
Equals cos(3*Pi/10). - R. J. Mathar, Aug 29 2025
Root of 16*x^4-20*x^2+5=0. Other 2 roots are +- A019881. - R. J. Mathar, Aug 29 2025
This^2+A019863^2=1. - R. J. Mathar, Aug 31 2025

A094874 Decimal expansion of (5-sqrt(5))/2.

Original entry on oeis.org

1, 3, 8, 1, 9, 6, 6, 0, 1, 1, 2, 5, 0, 1, 0, 5, 1, 5, 1, 7, 9, 5, 4, 1, 3, 1, 6, 5, 6, 3, 4, 3, 6, 1, 8, 8, 2, 2, 7, 9, 6, 9, 0, 8, 2, 0, 1, 9, 4, 2, 3, 7, 1, 3, 7, 8, 6, 4, 5, 5, 1, 3, 7, 7, 2, 9, 4, 7, 3, 9, 5, 3, 7, 1, 8, 1, 0, 9, 7, 5, 5, 0, 2, 9, 2, 7, 9, 2, 7, 9, 5, 8, 1, 0, 6, 0, 8, 8, 6, 2, 5, 1, 5, 2, 4
Offset: 1

Views

Author

N. J. A. Sloane, Jun 14 2004

Keywords

Comments

Also the limiting ratio of Lucas(n)/Fibonacci(n+1), or Fibonacci(n-1)/Fibonacci(n+1) + 1. - Alexander Adamchuk, Oct 10 2007

Examples

			1.38196601125010515179541316563436188...
		

Crossrefs

Programs

Formula

Equals (2-phi)*(2+phi) = 2 - 1/phi = 3 - phi = (5-sqrt(5))/2 = (2*sin(Pi/5))^2, where phi is the golden ratio (A001622).
Equals Product_{n > 0} (1 + 1/A192223(n)). - Charles R Greathouse IV, Jun 26 2011
Equals 1 + Sum_{k >= 2} (-1)^k/(Fibonacci(k)*Fibonacci(k+1)). See Ni et al. - Michel Marcus, Jun 26 2018; corrected by Michel Marcus, Mar 11 2024
Equals Sum_{k>=0} binomial(2*k,k)/((k+1) * 5^k). - Amiram Eldar, Aug 03 2020
From Amiram Eldar, Nov 28 2024: (Start)
Equals 5*A244847 = 2*A187798 = 1/A242671 = A182007^2 = sqrt(A187426).
Equals Product_{k>=1} (1 + 1/A081012(k)). (End)

A344212 Decimal expansion of 1 + 1/sqrt(5).

Original entry on oeis.org

1, 4, 4, 7, 2, 1, 3, 5, 9, 5, 4, 9, 9, 9, 5, 7, 9, 3, 9, 2, 8, 1, 8, 3, 4, 7, 3, 3, 7, 4, 6, 2, 5, 5, 2, 4, 7, 0, 8, 8, 1, 2, 3, 6, 7, 1, 9, 2, 2, 3, 0, 5, 1, 4, 4, 8, 5, 4, 1, 7, 9, 4, 4, 9, 0, 8, 2, 1, 0, 4, 1, 8, 5, 1, 2, 7, 5, 6, 0, 9, 7, 9, 8, 8, 2, 8, 8, 2, 8, 8, 1, 6, 7
Offset: 1

Views

Author

Wesley Ivan Hurt, May 11 2021

Keywords

Comments

Decimal expansion of the midradius of a rhombic triacontahedron with unit edge length.
Essentially the same sequence of digits as A176453, A134974, A020762 and A010476. - R. J. Mathar, May 16 2021

Examples

			1.447213595499957939281834733746255247088123671922305...
		

Crossrefs

Cf. A019952 (rhombic triacontahedron inscribed sphere radius).
Cf. A344171 (rhombic triacontahedron surface area).
Cf. A344172 (rhombic triacontahedron volume).

Programs

Formula

From Amiram Eldar, Nov 28 2024: (Start)
Equals 2*A242671 = 1/A187798.
Equals Product_{k>=0} (1 + 1/A081005(k)). (End)

A187426 Decimal expansion of (3-phi)^2 = 10 - 5*phi where phi is the golden ratio.

Original entry on oeis.org

1, 9, 0, 9, 8, 3, 0, 0, 5, 6, 2, 5, 0, 5, 2, 5, 7, 5, 8, 9, 7, 7, 0, 6, 5, 8, 2, 8, 1, 7, 1, 8, 0, 9, 4, 1, 1, 3, 9, 8, 4, 5, 4, 1, 0, 0, 9, 7, 1, 1, 8, 5, 6, 8, 9, 3, 2, 2, 7, 5, 6, 8, 8, 6, 4, 7, 3, 6, 9, 7, 6, 8, 5, 9, 0, 5, 4, 8, 7, 7, 5, 1, 4
Offset: 1

Views

Author

Joost Gielen, Aug 30 2013

Keywords

Comments

This is an integer in Q(sqrt(5)). - Wolfdieter Lang, Jan 07 2018

Examples

			1.909830...
		

Crossrefs

Cf. A226765.
Apart from the first digit the same as A187798.

Programs

Formula

(3-phi)^2 = 5/phi^2 = 10 - 5*phi.
Smaller root of x^2 - 15x + 25 = 0.
Equals 10*A187798-5. - R. J. Mathar, Feb 08 2023

Extensions

Corrected and extended by Charles R Greathouse IV, Aug 31 2013

A187799 Decimal expansion of 20/phi^2, where phi is the golden ratio. Also (with a different offset), decimal expansion of 3 - sqrt(5).

Original entry on oeis.org

7, 6, 3, 9, 3, 2, 0, 2, 2, 5, 0, 0, 2, 1, 0, 3, 0, 3, 5, 9, 0, 8, 2, 6, 3, 3, 1, 2, 6, 8, 7, 2, 3, 7, 6, 4, 5, 5, 9, 3, 8, 1, 6, 4, 0, 3, 8, 8, 4, 7, 4, 2, 7, 5, 7, 2, 9, 1, 0, 2, 7, 5, 4, 5, 8, 9, 4, 7, 9, 0, 7, 4, 3, 6, 2, 1, 9, 5, 1, 0, 0, 5, 8, 5, 5, 8, 5, 5, 9, 1, 6, 2, 1, 2, 1, 7, 7, 2, 5, 0, 3, 0, 4, 9, 1, 8, 2, 3, 8, 4, 9
Offset: 1

Views

Author

Joost Gielen, Aug 30 2013

Keywords

Examples

			20/phi^2 = 7.6393202250021030359082633...
3 - sqrt(5) = 0.76393202250021030359082633... (with offset 0).
		

Crossrefs

Programs

Formula

10*(3 - sqrt(5)) = 30 - 10*sqrt(5) = (5 - sqrt(5))^2 = 20/phi^2.
2 * Sum_{i > 1} (-1)^i/(F(i)F(i + 1)) = 3 - sqrt(5), where F(i) is the i-th Fibonacci number. This formula comes from John D. Watson, Jr.'s solution to Azarian's Problem B-1133 in the Fibonacci Quarterly. Azarian originally posed the problem as an infinite alternating sum explicitly written out for the first dozen terms or so. See the Azarian links above. - Alonso del Arte, Aug 25 2016

Extensions

Extended by Charles R Greathouse IV, Aug 31 2013

A226765 Decimal expansion of (13-5*sqrt(5))/2.

Original entry on oeis.org

9, 0, 9, 8, 3, 0, 0, 5, 6, 2, 5, 0, 5, 2, 5, 7, 5, 8, 9, 7, 7, 0, 6, 5, 8, 2, 8, 1, 7, 1, 8, 0, 9, 4, 1, 1, 3, 9, 8, 4, 5, 4, 1, 0, 0, 9, 7, 1, 1, 8, 5, 6, 8, 9, 3, 2, 2, 7, 5, 6, 8, 8, 6, 4, 7, 3, 6, 9, 7, 6, 8, 5, 9, 0, 5, 4, 8, 7, 7, 5, 1, 4, 6, 3, 9, 6
Offset: 0

Views

Author

Clark Kimberling, Jul 21 2013

Keywords

Comments

(13 - 5*sqrt(5))/2 = lim_{n->oo} -F(n)+(2+F(n+1))*(1+F(n+2))/(3+F(n+3)), where F = A000045 (Fibonacci numbers).
Apart from leading digits the same as A187798 and A187426. - R. J. Mathar, Sep 21 2013

Examples

			(13-5*sqrt(5))/2 = 0.9098300562505257589770658281718094113985...
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Fibonacci[n]; h[n_] := (2 + f[n + 1]) (1 + f[n + 2])/(3 + f[n + 3]); N[h[100] - f[100], 20]; d = RealDigits[(13 - 5*Sqrt[5])/2, 10, 120][[1]]

A229760 Decimal expansion of 25 - 10*sqrt(5).

Original entry on oeis.org

2, 6, 3, 9, 3, 2, 0, 2, 2, 5, 0, 0, 2, 1, 0, 3, 0, 3, 5, 9, 0, 8, 2, 6, 3, 3, 1, 2, 6, 8, 7, 2, 3, 7, 6, 4, 5, 5, 9, 3, 8, 1, 6, 4, 0, 3, 8, 8, 4, 7, 4, 2, 7, 5, 7, 2, 9, 1, 0, 2, 7, 5, 4, 5, 8, 9, 4, 7, 9, 0, 7, 4, 3, 6, 2, 1, 9, 5, 1, 0, 0, 5, 8, 5, 5, 8, 5, 5, 9, 1, 6, 2, 1, 2, 1, 7, 7, 2, 5, 0, 3, 0, 4, 9
Offset: 1

Views

Author

Joost Gielen, Sep 28 2013

Keywords

Comments

Apart from the first digit the same as A187799.

Examples

			2.639320225002103035908263312687237645593816403884742757291027545894790...
		

Crossrefs

Programs

A081011 a(n) = Fibonacci(4n+3) + 2, or Fibonacci(2n+3)*Lucas(2n).

Original entry on oeis.org

4, 15, 91, 612, 4183, 28659, 196420, 1346271, 9227467, 63245988, 433494439, 2971215075, 20365011076, 139583862447, 956722026043, 6557470319844, 44945570212855, 308061521170131, 2111485077978052, 14472334024676223
Offset: 0

Views

Author

R. K. Guy, Mar 01 2003

Keywords

Comments

For n>0, a(n) is the area of the trapezoid defined by the four points (F(n+1), F(n+2)), (F(n+2), F(n+1)), (F(n+3), F(n+4)), and (F(n+4), F(n+3)) where F(n) = A000045(n). - J. M. Bergot, May 14 2014

References

  • Hugh C. Williams, Edouard Lucas and Primality Testing, John Wiley and Sons, 1998, p. 75

Crossrefs

Cf. A000045 (Fibonacci numbers), A000032 (Lucas numbers), A187798.

Programs

  • GAP
    List([0..30], n-> Fibonacci(4*n+3) -2); # G. C. Greubel, Jul 14 2019
  • Magma
    [Fibonacci(4*n+3)+2: n in [0..30]]; // Vincenzo Librandi, Apr 18 2011
    
  • Maple
    with(combinat) for n from 0 to 30 do printf(`%d,`,fibonacci(4*n+3)+2) od # James Sellers, Mar 03 2003
  • Mathematica
    Table[Fibonacci[4n+3] +2, {n,0,30}] (* or *)
    Table[Fibonacci[2n+3]*LucasL[2n], {n, 0, 30}] (* Alonso del Arte, Apr 18 2011 *)
    LinearRecurrence[{8,-8,1},{4,15,91},30] (* Harvey P. Dale, Apr 22 2017 *)
  • PARI
    vector(30, n, n--; fibonacci(4*n+3)+2) \\ G. C. Greubel, Jul 14 2019
    
  • Sage
    [fibonacci(4*n+3)+2 for n in (0..30)] # G. C. Greubel, Jul 14 2019
    

Formula

a(n) = 8*a(n-1) - 8*a(n-2) + a(n-3).
G.f.: (4-17*x+3*x^2)/((1-x)*(1-7*x+x^2)). - Colin Barker, Jun 22 2012
Product_{n>=0} (1 - 1/a(n)) = (3-phi)/2 = A187798. - Amiram Eldar, Nov 28 2024

Extensions

More terms from James Sellers, Mar 03 2003

A229780 Decimal expansion of (3+sqrt(5))/10.

Original entry on oeis.org

5, 2, 3, 6, 0, 6, 7, 9, 7, 7, 4, 9, 9, 7, 8, 9, 6, 9, 6, 4, 0, 9, 1, 7, 3, 6, 6, 8, 7, 3, 1, 2, 7, 6, 2, 3, 5, 4, 4, 0, 6, 1, 8, 3, 5, 9, 6, 1, 1, 5, 2, 5, 7, 2, 4, 2, 7, 0, 8, 9, 7, 2, 4, 5, 4, 1, 0, 5, 2, 0, 9, 2, 5, 6, 3, 7, 8, 0, 4, 8, 9, 9, 4, 1, 4, 4, 1, 4, 4, 0, 8, 3, 7, 8, 7, 8, 2, 2, 7
Offset: 0

Views

Author

Joost Gielen, Sep 29 2013

Keywords

Comments

sqrt((3+sqrt(5))/10) = sqrt(phi^2/5) = (5+sqrt(5))/10 = (3+sqrt(5))/10 + 2/10 = 0.723606797... .
Essentially the same as A134972, A134945, A098317 and A002163. - R. J. Mathar, Sep 30 2013
Equals one tenth of the limit of (G(n+2)+G(n+1)+G(n-1)+G(n-2))/G(n), where G(n) is any nonzero sequence satisfying the recurrence G(n+1) = G(n) + G(n-1) including A000032 and A000045, as n --> infinity. - Richard R. Forberg, Nov 17 2014
3+sqrt(5) is the perimeter of a golden rectangle with a unit width. - Amiram Eldar, May 18 2021
Constant x such that x = sqrt(x) - 1/5. - Andrea Pinos, Jan 15 2024

Examples

			0.5236067977499...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[GoldenRatio^2/5,10,120][[1]] (* Harvey P. Dale, Dec 02 2014 *)

Formula

(3+sqrt(5))/10 = (phi/sqrt(5))^2 = phi^2/5 where phi is the golden ratio.
Showing 1-10 of 12 results. Next