A019881 Decimal expansion of sin(2*Pi/5) (sine of 72 degrees).
9, 5, 1, 0, 5, 6, 5, 1, 6, 2, 9, 5, 1, 5, 3, 5, 7, 2, 1, 1, 6, 4, 3, 9, 3, 3, 3, 3, 7, 9, 3, 8, 2, 1, 4, 3, 4, 0, 5, 6, 9, 8, 6, 3, 4, 1, 2, 5, 7, 5, 0, 2, 2, 2, 4, 4, 7, 3, 0, 5, 6, 4, 4, 4, 3, 0, 1, 5, 3, 1, 7, 0, 0, 8, 5, 1, 9, 3, 5, 0, 1, 7, 1, 8, 7, 9, 2, 8, 1, 0, 9, 7, 0, 8, 1, 1, 3, 8, 1
Offset: 0
Examples
0.95105651629515357211643933337938214340569863412575022244730564443015317008...
References
- Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §12.4 Theorems and Formulas (Solid Geometry), p. 451.
Links
- Ivan Panchenko, Table of n, a(n) for n = 0..1000
- Eric Weisstein's World of Mathematics, Golden Rhombus.
- Wikipedia, Exact trigonometric constants.
- Wikipedia, Platonic solid.
- Wolfram Alpha, Johnson solid 2.
- Index entries for algebraic numbers, degree 4.
Crossrefs
Programs
-
Magma
SetDefaultRealField(RealField(100)); Sqrt((5 + Sqrt(5))/8); // G. C. Greubel, Nov 02 2018
-
Maple
Digits:=100: evalf(sin(2*Pi/5)); # Wesley Ivan Hurt, Sep 01 2014
-
Mathematica
RealDigits[Sqrt[(5 + Sqrt[5])/8], 10, 111] (* Robert G. Wilson v *) RealDigits[Sin[2 Pi/5], 10, 111][[1]] (* Robert G. Wilson v, Jan 07 2018 *)
-
PARI
default(realprecision, 120); real(I^(1/5)) \\ Rick L. Shepherd, Apr 10 2017
Formula
Equals sqrt((5+sqrt(5))/8) = cos(Pi/10). - Zak Seidov, Nov 18 2006
Equals 2F1(13/20,7/20;1/2;3/4) / 2. - R. J. Mathar, Oct 27 2008
Equals the real part of i^(1/5). - Stanislav Sykora, Apr 25 2012
Equals sin(2*Pi/5) = sqrt(2 + phi)/2 = -sin(3*Pi/5), with phi = A001622 - Wolfdieter Lang, Jan 07 2018
Comments