cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A019827 Decimal expansion of sin(Pi/10) (angle of 18 degrees).

Original entry on oeis.org

3, 0, 9, 0, 1, 6, 9, 9, 4, 3, 7, 4, 9, 4, 7, 4, 2, 4, 1, 0, 2, 2, 9, 3, 4, 1, 7, 1, 8, 2, 8, 1, 9, 0, 5, 8, 8, 6, 0, 1, 5, 4, 5, 8, 9, 9, 0, 2, 8, 8, 1, 4, 3, 1, 0, 6, 7, 7, 2, 4, 3, 1, 1, 3, 5, 2, 6, 3, 0, 2, 3, 1, 4, 0, 9, 4, 5, 1, 2, 2, 4, 8, 5, 3, 6, 0, 3, 6, 0, 2, 0, 9, 4, 6, 9, 5, 5, 6, 8
Offset: 0

Views

Author

Keywords

Comments

Decimal expansion of cos(2*Pi/5) (angle of 72 degrees).
Also the imaginary part of i^(1/5). - Stanislav Sykora, Apr 25 2012
One of the two roots of 4x^2 + 2x - 1 (the other is the sine of 54 degrees times -1 = -A019863). - Alonso del Arte, Apr 25 2015
This is the height h of the isosceles triangle in a regular pentagon inscribed in a unit circle, formed by a diagonal as base and two adjacent radii. h = cos(2*Pi/5) = sin(Pi/10). - Wolfdieter Lang, Jan 08 2018
Quadratic number of denominator 2 and minimal polynomial 4x^2 + 2x - 1. - Charles R Greathouse IV, May 13 2019
Largest superstable width of the logistic map (see Finch). - Stefano Spezia, Nov 23 2024

Examples

			0.30901699437494742410229341718281905886015458990288143106772431135263...
		

References

  • Steven R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, 2003, Sections 1.9 and 8.19, pp. 66, 535.

Crossrefs

Programs

Formula

Equals (sqrt(5) - 1)/4 = (phi - 1)/2 = 1/(2*phi), with phi from A001622.
Equals 1/(1 + sqrt(5)). - Omar E. Pol, Nov 15 2007
Equals 1/A134945. - R. J. Mathar, Jan 17 2021
Equals 2*A019818*A019890. - R. J. Mathar, Jan 17 2021
Equals Product_{k>=1} 1 - 1/(phi + phi^k), where phi is the golden ratio (A001622) (Ohtsuka, 2018). - Amiram Eldar, Dec 02 2021
Equals Product_{k>=1} (1 - 1/A055588(k)). - Amiram Eldar, Nov 28 2024
Equals A094214/2 = 1-A187798 = A341332/Pi = (A377697-2)/3. - Hugo Pfoertner, Nov 28 2024
This^2 + A019881^2 = 1. - R. J. Mathar, Aug 31 2025

A019818 Decimal expansion of sine of 9 degrees.

Original entry on oeis.org

1, 5, 6, 4, 3, 4, 4, 6, 5, 0, 4, 0, 2, 3, 0, 8, 6, 9, 0, 1, 0, 1, 0, 5, 3, 1, 9, 4, 6, 7, 1, 6, 6, 8, 9, 2, 3, 1, 3, 8, 9, 9, 8, 9, 2, 0, 8, 5, 6, 6, 0, 7, 9, 0, 0, 8, 4, 6, 4, 1, 3, 4, 6, 0, 5, 7, 7, 5, 8, 7, 9, 3, 3, 0, 5, 6, 2, 3, 5, 7, 9, 3, 3, 6, 6, 9, 5, 8, 7, 2, 6, 7, 6, 8, 4, 8, 6, 8, 8
Offset: 0

Views

Author

Keywords

Comments

Also the imaginary part of i^(1/10). - Stanislav Sykora, Apr 25 2012
An algebraic number of degree 8 and denominator 2. - Charles R Greathouse IV, Aug 27 2017

Examples

			sin(Pi/20) = 0.1564344650402308690101053194671668923138...
		

Crossrefs

Programs

Formula

sqrt(8-2*sqrt(10+2*sqrt(5)))/4 = sqrt((1/2)*(1 - sqrt((1/8)*(5 + sqrt(5))))). - Herman Jamke (hermanjamke(AT)fastmail.fm), Nov 13 2006
Equals A019815*A019896 + A019812*A019893. - R. J. Mathar, Jan 27 2021
This^2 + A019890^2=1. - R. J. Mathar, Aug 31 2025
Smallest positive of the 8 real-valued roots of 256*x^8 -512*x^6 +304*x^4 -48*x^2+1=0. - R. J. Mathar, Aug 31 2025

A232735 Decimal expansion of the real part of I^(1/7), or cos(Pi/14).

Original entry on oeis.org

9, 7, 4, 9, 2, 7, 9, 1, 2, 1, 8, 1, 8, 2, 3, 6, 0, 7, 0, 1, 8, 1, 3, 1, 6, 8, 2, 9, 9, 3, 9, 3, 1, 2, 1, 7, 2, 3, 2, 7, 8, 5, 8, 0, 0, 6, 1, 9, 9, 9, 7, 4, 3, 7, 6, 4, 8, 0, 7, 9, 5, 7, 5, 0, 8, 7, 6, 4, 5, 9, 3, 1, 6, 3, 4, 4, 0, 3, 7, 9, 3, 7, 0, 0, 1, 1, 2, 4, 5, 8, 1, 2, 0, 7, 3, 6, 9, 2, 5, 1, 6, 4, 0, 1, 4
Offset: 0

Views

Author

Stanislav Sykora, Nov 29 2013

Keywords

Comments

The corresponding imaginary part is in A232736.
Root of the equation -7 + 56*x^2 - 112*x^4 + 64*x^6 = 0. - Vaclav Kotesovec, Apr 04 2021

Examples

			0.974927912181823607018131682993931217232785800619997437648...
		

Crossrefs

Cf. A232736 (imaginary part), A010503 (real(I^(1/2))), A010527 (real(I^(1/3))), A144981 (real(I^(1/4))), A019881 (real(I^(1/5))), A019884 (real(I^(1/6))), A232737 (real(I^(1/8))), A019889 (real(I^(1/9))), A019890 (real(I^(1/10))).

Programs

  • Magma
    R:= RealField(100); Cos(Pi(R)/14); // G. C. Greubel, Sep 19 2022
    
  • Mathematica
    RealDigits[Cos[Pi/14],10,120][[1]] (* Harvey P. Dale, Dec 15 2018 *)
  • SageMath
    numerical_approx(cos(pi/14), digits=120) # G. C. Greubel, Sep 19 2022

Formula

2*this^2 -1 = A073052. - R. J. Mathar, Aug 29 2025
Equals 2F1(-1/14,1/14;1/2;1) . - R. J. Mathar, Aug 31 2025

A019836 Decimal expansion of sine of 27 degrees.

Original entry on oeis.org

4, 5, 3, 9, 9, 0, 4, 9, 9, 7, 3, 9, 5, 4, 6, 7, 9, 1, 5, 6, 0, 4, 0, 8, 3, 6, 6, 3, 5, 7, 8, 7, 1, 1, 9, 8, 9, 8, 3, 0, 4, 7, 7, 0, 3, 0, 4, 9, 0, 2, 1, 5, 5, 6, 9, 8, 5, 3, 1, 6, 0, 0, 5, 8, 2, 2, 0, 2, 6, 7, 8, 4, 1, 3, 1, 8, 5, 2, 4, 2, 8, 7, 5, 4, 4, 7, 3, 4, 3, 9, 2, 2, 1, 9, 4, 6, 7, 9, 7
Offset: 0

Views

Author

Keywords

Comments

An algebraic number of degree 8 and denominator 2. - Charles R Greathouse IV, Aug 27 2017

Programs

Formula

Equals cos(7*Pi/20). 2*this^2-1 = -A019845. - R. J. Mathar, Aug 29 2025

A019872 Decimal expansion of sine of 63 degrees.

Original entry on oeis.org

8, 9, 1, 0, 0, 6, 5, 2, 4, 1, 8, 8, 3, 6, 7, 8, 6, 2, 3, 5, 9, 7, 0, 9, 5, 7, 1, 4, 1, 3, 6, 2, 6, 3, 1, 2, 7, 7, 0, 5, 1, 8, 5, 1, 9, 0, 3, 6, 0, 8, 8, 7, 4, 5, 4, 0, 5, 5, 2, 2, 2, 8, 4, 5, 2, 2, 4, 9, 2, 2, 7, 4, 1, 7, 6, 1, 3, 5, 2, 2, 4, 3, 7, 7, 9, 3, 8, 5, 8, 2, 7, 3, 4, 8, 6, 1, 4, 7, 7
Offset: 0

Views

Author

Keywords

Comments

An algebraic number of degree 8 and denominator 2. - Charles R Greathouse IV, Nov 06 2017

Programs

Formula

Equals A019851 * A019878 + A019830 * A019857 = A010527 * A019896 + A019812 * (1/2). - R. J. Mathar, Jan 27 2021
This^2 + A019836^2=1. - R. J. Mathar, Aug 31 2025
One of the 8 real-valued roots of 256*x^8-512*x^6+304*x^4-48*x^2+1=0. (Other A019890, A019836, A019818) - R. J. Mathar, Aug 31 2025

A232737 Decimal expansion of the real part of I^(1/8), or cos(Pi/16).

Original entry on oeis.org

9, 8, 0, 7, 8, 5, 2, 8, 0, 4, 0, 3, 2, 3, 0, 4, 4, 9, 1, 2, 6, 1, 8, 2, 2, 3, 6, 1, 3, 4, 2, 3, 9, 0, 3, 6, 9, 7, 3, 9, 3, 3, 7, 3, 0, 8, 9, 3, 3, 3, 6, 0, 9, 5, 0, 0, 2, 9, 1, 6, 0, 8, 8, 5, 4, 5, 3, 0, 6, 5, 1, 3, 5, 4, 9, 6, 0, 5, 0, 6, 3, 9, 1, 5, 0, 6, 4, 9, 8, 5, 8, 5, 3, 3, 0, 0, 7, 6, 3, 2, 5, 9, 8, 9, 4
Offset: 0

Views

Author

Stanislav Sykora, Nov 29 2013

Keywords

Comments

The corresponding imaginary part is in A232738.

Examples

			0.9807852804032304491261822361342390369739337308933360950029160885453...
		

Crossrefs

Cf. A232738 (imaginary part), A010503 (real(I^(1/2))), A010527 (real(I^(1/3))), A144981 (real(I^(1/4))), A019881 (real(I^(1/5))), A019884 (real(I^(1/6))), A232735 (real(I^(1/7))), A019889 (real(I^(1/9))), A019890 (real(I^(1/10))).

Programs

Formula

Equals (1/2) * sqrt(2+sqrt(2+sqrt(2))). - Seiichi Manyama, Apr 04 2021
Root of 128*x^8 -256*x^6 +160*x^4 -32*x^2 +1 = 0. - R. J. Mathar, Aug 29 2025
2*this^2 -1 = A144981. - R. J. Mathar, Aug 29 2025
Equals 2F1(-1/8,1/8;1/2;1/2). - R. J. Mathar, Aug 31 2025

A019907 Decimal expansion of tangent of 9 degrees.

Original entry on oeis.org

1, 5, 8, 3, 8, 4, 4, 4, 0, 3, 2, 4, 5, 3, 6, 2, 9, 3, 8, 3, 8, 8, 8, 3, 0, 9, 2, 6, 9, 4, 3, 6, 6, 4, 1, 1, 4, 3, 3, 9, 1, 6, 2, 1, 6, 0, 7, 3, 7, 3, 3, 2, 9, 7, 2, 3, 1, 7, 4, 0, 9, 9, 5, 0, 3, 5, 6, 5, 7, 6, 3, 7, 1, 4, 2, 7, 1, 3, 9, 8, 0, 9, 5, 9, 8, 2, 0, 6, 8, 6, 7, 1, 1, 6, 7, 6, 8, 3, 9
Offset: 0

Views

Author

Keywords

Comments

Also the decimal expansion of cotangent of 81 degrees. - Mohammad K. Azarian, Jun 30 2013

Programs

  • Mathematica
    RealDigits[Tan[9 Degree],10,120][[1]] (* Harvey P. Dale, Aug 23 2020 *)

Formula

Equals tan(Pi/20) = A019818/A019890. - R. J. Mathar, Aug 29 2025
Smallest positive of the 8 real-valued roots of x^8-44*x^6+166*x^4-44*x^2+1=0. (Others A019925, A019961, A019979). - R. J. Mathar, Aug 31 2025

A343056 Decimal expansion of the real part of i^(1/16), or cos(Pi/32).

Original entry on oeis.org

9, 9, 5, 1, 8, 4, 7, 2, 6, 6, 7, 2, 1, 9, 6, 8, 8, 6, 2, 4, 4, 8, 3, 6, 9, 5, 3, 1, 0, 9, 4, 7, 9, 9, 2, 1, 5, 7, 5, 4, 7, 4, 8, 6, 8, 7, 2, 9, 8, 5, 7, 0, 6, 1, 8, 3, 3, 6, 1, 2, 9, 6, 5, 7, 8, 4, 8, 9, 0, 1, 6, 6, 8, 9, 4, 5, 8, 6, 5, 3, 7, 9, 7, 2, 5, 2, 9, 0, 8, 4, 2, 6, 9, 6, 4, 8, 3, 9, 0, 2, 8, 7, 7, 2, 4, 4, 9, 3, 1, 1, 8, 2, 9
Offset: 0

Views

Author

Seiichi Manyama, Apr 04 2021

Keywords

Examples

			0.9951847266721968862448369...
		

Crossrefs

cos(Pi/m): A010503 (m=4), A019863 (m=5), A010527 (m=6), A073052 (m=7), A144981 (m=8), A019879 (m=9), A019881 (m=10), A019884 (m=12), A232735 (m=14), A019887 (m=15), A232737 (m=16), A210649 (m=17), A019889 (m=18), A019890 (m=20), A144982 (m=24), A019893 (m=30). this sequence (m=32), A019894 (m=36).

Programs

  • Magma
    R:= RealField(127); Cos(Pi(R)/32); // G. C. Greubel, Sep 30 2022
    
  • Mathematica
    RealDigits[Cos[Pi/32], 10, 100][[1]] (* Amiram Eldar, Apr 27 2021 *)
  • PARI
    real(I^(1/16))
    
  • PARI
    cos(Pi/32)
    
  • PARI
    sqrt(2+sqrt(2+sqrt(2+sqrt(2))))/2
    
  • SageMath
    numerical_approx(cos(pi/32), digits=122) # G. C. Greubel, Sep 30 2022

Formula

Equals (1/2) * sqrt(2+sqrt(2+sqrt(2+sqrt(2)))).
Satisfies 32768*x^16 -131072*x^14 +212992*x^12 -180224*x^10 +84480*x^8 -21504*x^6 +2688*x^4 -128*x^2 +1 = 0. - R. J. Mathar, Aug 29 2025
Equals 2F1(-1/16,1/16;1/2;1/2). - R. J. Mathar, Aug 31 2025
Showing 1-8 of 8 results.