cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A019863 Decimal expansion of sin(3*Pi/10) (sine of 54 degrees, or cosine of 36 degrees).

Original entry on oeis.org

8, 0, 9, 0, 1, 6, 9, 9, 4, 3, 7, 4, 9, 4, 7, 4, 2, 4, 1, 0, 2, 2, 9, 3, 4, 1, 7, 1, 8, 2, 8, 1, 9, 0, 5, 8, 8, 6, 0, 1, 5, 4, 5, 8, 9, 9, 0, 2, 8, 8, 1, 4, 3, 1, 0, 6, 7, 7, 2, 4, 3, 1, 1, 3, 5, 2, 6, 3, 0, 2, 3, 1, 4, 0, 9, 4, 5, 1, 2, 2, 4, 8, 5, 3, 6, 0, 3, 6, 0, 2, 0, 9, 4, 6, 9, 5, 5, 6, 8
Offset: 0

Views

Author

Keywords

Comments

Midsphere radius of regular icosahedron with unit edges.
Also half of the golden ratio (A001622). - Stanislav Sykora, Jan 30 2014
Andris Ambainis (see Aaronson link) observes that combining the results of Barak-Hardt-Haviv-Rao with Dinur-Steurer yields the maximal probability of winning n parallel repetitions of a classical CHSH game (see A201488) asymptotic to this constant to the power of n, an improvement on the naive probability of (3/4)^n. (All the random bits are received upfront but the players cannot communicate or share an entangled state.) - Charles R Greathouse IV, May 15 2014
This is the height h of the isosceles triangle in a regular pentagon, in length units of the circumscribing radius, formed by a side as base and two adjacent radii. h = sin(3*Pi/10) = cos(Pi/5) (radius 1 unit). - Wolfdieter Lang, Jan 08 2018
Also the limiting value(L) of "r" which is abscissa of the vertex of the parabola F(n)*x^2 - F(n+1)*x + F(n + 2)(where F(n)=A000045(n) are the Fibonacci numbers and n>0). - Burak Muslu, Feb 24 2021

Examples

			0.80901699437494742410229341718281905886015458990288143106772431135263...
		

Crossrefs

Platonic solids midradii: A020765 (tetrahedron), A020761 (octahedron), A010503 (cube), A239798 (dodecahedron).

Programs

Formula

Equals (1+sqrt(5))/4 = cos(Pi/5) = sin(3*Pi/10). - R. J. Mathar, Jun 18 2006
Equals 2F1(4/5,1/5;1/2;3/4) / 2 = A019827 + 1/2. - R. J. Mathar, Oct 27 2008
Equals A001622 / 2. - Stanislav Sykora, Jan 30 2014
phi / 2 = (i^(2/5) + i^(-2/5)) / 2 = i^(2/5) - (sin(Pi/5))*i = i^(-2/5) + (sin(Pi/5))*i = i^(2/5) - (cos(3*Pi/10))*i = i^(-2/5) + (cos(3*Pi/10))*i. - Jaroslav Krizek, Feb 03 2014
Equals 1/A134972. - R. J. Mathar, Jan 17 2021
Equals 2*A019836*A019872. - R. J. Mathar, Jan 17 2021
Equals (A094214 + 1)/2 or 1/(2*A094214). - Burak Muslu, Feb 24 2021
Equals hypergeom([-2/5, -3/5], [6/5], -1) = hypergeom([-1/5, 3/5], [6/5], 1) = hypergeom([1/5, -3/5], [4/5], 1). - Peter Bala, Mar 04 2022
Equals Product_{k>=1} (1 - (-1)^k/A001611(k)). - Amiram Eldar, Nov 28 2024
Equals 2*A134944 = 3*A134946 = A187426-11/10 = A296182-1. - Hugo Pfoertner, Nov 28 2024
Equals A134945/4. Root of 4*x^2-2*x-1=0. - R. J. Mathar, Aug 29 2025

A094874 Decimal expansion of (5-sqrt(5))/2.

Original entry on oeis.org

1, 3, 8, 1, 9, 6, 6, 0, 1, 1, 2, 5, 0, 1, 0, 5, 1, 5, 1, 7, 9, 5, 4, 1, 3, 1, 6, 5, 6, 3, 4, 3, 6, 1, 8, 8, 2, 2, 7, 9, 6, 9, 0, 8, 2, 0, 1, 9, 4, 2, 3, 7, 1, 3, 7, 8, 6, 4, 5, 5, 1, 3, 7, 7, 2, 9, 4, 7, 3, 9, 5, 3, 7, 1, 8, 1, 0, 9, 7, 5, 5, 0, 2, 9, 2, 7, 9, 2, 7, 9, 5, 8, 1, 0, 6, 0, 8, 8, 6, 2, 5, 1, 5, 2, 4
Offset: 1

Views

Author

N. J. A. Sloane, Jun 14 2004

Keywords

Comments

Also the limiting ratio of Lucas(n)/Fibonacci(n+1), or Fibonacci(n-1)/Fibonacci(n+1) + 1. - Alexander Adamchuk, Oct 10 2007

Examples

			1.38196601125010515179541316563436188...
		

Crossrefs

Programs

Formula

Equals (2-phi)*(2+phi) = 2 - 1/phi = 3 - phi = (5-sqrt(5))/2 = (2*sin(Pi/5))^2, where phi is the golden ratio (A001622).
Equals Product_{n > 0} (1 + 1/A192223(n)). - Charles R Greathouse IV, Jun 26 2011
Equals 1 + Sum_{k >= 2} (-1)^k/(Fibonacci(k)*Fibonacci(k+1)). See Ni et al. - Michel Marcus, Jun 26 2018; corrected by Michel Marcus, Mar 11 2024
Equals Sum_{k>=0} binomial(2*k,k)/((k+1) * 5^k). - Amiram Eldar, Aug 03 2020
From Amiram Eldar, Nov 28 2024: (Start)
Equals 5*A244847 = 2*A187798 = 1/A242671 = A182007^2 = sqrt(A187426).
Equals Product_{k>=1} (1 + 1/A081012(k)). (End)

A187798 Decimal expansion of (3-phi)/2, where phi is the golden ratio.

Original entry on oeis.org

6, 9, 0, 9, 8, 3, 0, 0, 5, 6, 2, 5, 0, 5, 2, 5, 7, 5, 8, 9, 7, 7, 0, 6, 5, 8, 2, 8, 1, 7, 1, 8, 0, 9, 4, 1, 1, 3, 9, 8, 4, 5, 4, 1, 0, 0, 9, 7, 1, 1, 8, 5, 6, 8, 9, 3, 2, 2, 7, 5, 6, 8, 8, 6, 4, 7, 3, 6, 9, 7, 6, 8, 5, 9, 0, 5, 4, 8, 7, 7, 5, 1, 4, 6, 3, 9, 6, 3, 9, 7, 9, 0, 5, 3, 0, 4, 4, 3, 1, 2, 5, 7, 6, 2, 2
Offset: 0

Views

Author

Joost Gielen, Aug 30 2013

Keywords

Comments

This is the height h of the isosceles triangle in a regular pentagon inscribed in the unit circle formed from a diagonal as base and two adjacent pentagon sides. h = sqrt(sqrt(3-phi)^2 - (sqrt(2 + phi)/2)^2) = sqrt(10 - 5*phi)/2 = (3 - phi)/2. - Wolfdieter Lang, Jan 07 2018

Examples

			0.6909830056250525758977065828171809411398454100971185689322756886473697685905...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[(3 - GoldenRatio)/2, 10, 111][[1]] (* or *)
    RealDigits[(5 - Sqrt[5])/4, 10, 111][[1]] (* Robert G. Wilson v, Jan 07 2018 *)
  • PARI
    (5-sqrt(5))/4 \\ Charles R Greathouse IV, Aug 31 2013

Formula

Equals (3-phi)/2 = A094874/2 with phi from A001622.
From Amiram Eldar, Nov 28 2024: (Start)
Equals 1/A344212.
Equals Product_{k>=0} (1 - 1/A081011(k)). (End)

Extensions

Extended by Charles R Greathouse IV, Aug 31 2013

A187799 Decimal expansion of 20/phi^2, where phi is the golden ratio. Also (with a different offset), decimal expansion of 3 - sqrt(5).

Original entry on oeis.org

7, 6, 3, 9, 3, 2, 0, 2, 2, 5, 0, 0, 2, 1, 0, 3, 0, 3, 5, 9, 0, 8, 2, 6, 3, 3, 1, 2, 6, 8, 7, 2, 3, 7, 6, 4, 5, 5, 9, 3, 8, 1, 6, 4, 0, 3, 8, 8, 4, 7, 4, 2, 7, 5, 7, 2, 9, 1, 0, 2, 7, 5, 4, 5, 8, 9, 4, 7, 9, 0, 7, 4, 3, 6, 2, 1, 9, 5, 1, 0, 0, 5, 8, 5, 5, 8, 5, 5, 9, 1, 6, 2, 1, 2, 1, 7, 7, 2, 5, 0, 3, 0, 4, 9, 1, 8, 2, 3, 8, 4, 9
Offset: 1

Views

Author

Joost Gielen, Aug 30 2013

Keywords

Examples

			20/phi^2 = 7.6393202250021030359082633...
3 - sqrt(5) = 0.76393202250021030359082633... (with offset 0).
		

Crossrefs

Programs

Formula

10*(3 - sqrt(5)) = 30 - 10*sqrt(5) = (5 - sqrt(5))^2 = 20/phi^2.
2 * Sum_{i > 1} (-1)^i/(F(i)F(i + 1)) = 3 - sqrt(5), where F(i) is the i-th Fibonacci number. This formula comes from John D. Watson, Jr.'s solution to Azarian's Problem B-1133 in the Fibonacci Quarterly. Azarian originally posed the problem as an infinite alternating sum explicitly written out for the first dozen terms or so. See the Azarian links above. - Alonso del Arte, Aug 25 2016

Extensions

Extended by Charles R Greathouse IV, Aug 31 2013

A226765 Decimal expansion of (13-5*sqrt(5))/2.

Original entry on oeis.org

9, 0, 9, 8, 3, 0, 0, 5, 6, 2, 5, 0, 5, 2, 5, 7, 5, 8, 9, 7, 7, 0, 6, 5, 8, 2, 8, 1, 7, 1, 8, 0, 9, 4, 1, 1, 3, 9, 8, 4, 5, 4, 1, 0, 0, 9, 7, 1, 1, 8, 5, 6, 8, 9, 3, 2, 2, 7, 5, 6, 8, 8, 6, 4, 7, 3, 6, 9, 7, 6, 8, 5, 9, 0, 5, 4, 8, 7, 7, 5, 1, 4, 6, 3, 9, 6
Offset: 0

Views

Author

Clark Kimberling, Jul 21 2013

Keywords

Comments

(13 - 5*sqrt(5))/2 = lim_{n->oo} -F(n)+(2+F(n+1))*(1+F(n+2))/(3+F(n+3)), where F = A000045 (Fibonacci numbers).
Apart from leading digits the same as A187798 and A187426. - R. J. Mathar, Sep 21 2013

Examples

			(13-5*sqrt(5))/2 = 0.9098300562505257589770658281718094113985...
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Fibonacci[n]; h[n_] := (2 + f[n + 1]) (1 + f[n + 2])/(3 + f[n + 3]); N[h[100] - f[100], 20]; d = RealDigits[(13 - 5*Sqrt[5])/2, 10, 120][[1]]

A229760 Decimal expansion of 25 - 10*sqrt(5).

Original entry on oeis.org

2, 6, 3, 9, 3, 2, 0, 2, 2, 5, 0, 0, 2, 1, 0, 3, 0, 3, 5, 9, 0, 8, 2, 6, 3, 3, 1, 2, 6, 8, 7, 2, 3, 7, 6, 4, 5, 5, 9, 3, 8, 1, 6, 4, 0, 3, 8, 8, 4, 7, 4, 2, 7, 5, 7, 2, 9, 1, 0, 2, 7, 5, 4, 5, 8, 9, 4, 7, 9, 0, 7, 4, 3, 6, 2, 1, 9, 5, 1, 0, 0, 5, 8, 5, 5, 8, 5, 5, 9, 1, 6, 2, 1, 2, 1, 7, 7, 2, 5, 0, 3, 0, 4, 9
Offset: 1

Views

Author

Joost Gielen, Sep 28 2013

Keywords

Comments

Apart from the first digit the same as A187799.

Examples

			2.639320225002103035908263312687237645593816403884742757291027545894790...
		

Crossrefs

Programs

A229759 Decimal expansion of (25-10*sqrt(5))/2.

Original entry on oeis.org

1, 3, 1, 9, 6, 6, 0, 1, 1, 2, 5, 0, 1, 0, 5, 1, 5, 1, 7, 9, 5, 4, 1, 3, 1, 6, 5, 6, 3, 4, 3, 6, 1, 8, 8, 2, 2, 7, 9, 6, 9, 0, 8, 2, 0, 1, 9, 4, 2, 3, 7, 1, 3, 7, 8, 6, 4, 5, 5, 1, 3, 7, 7, 2, 9, 4, 7, 3, 9, 5, 3, 7, 1, 8, 1, 0, 9, 7, 5, 5, 0, 2, 9, 2, 7, 9, 2, 7, 9, 5, 8, 1, 0, 6, 0, 8, 8, 6, 2, 5, 1, 5, 2, 4
Offset: 1

Views

Author

Joost Gielen, Sep 28 2013

Keywords

Comments

Essentially the same as A225667 and A132338. - R. J. Mathar, Sep 30 2013

Crossrefs

Formula

(25-10*sqrt(5))/2 = 25/2 - 5*sqrt(5) = 1.319660... .

A267860 An infinite ternary 3-Fibonacci sequence (replace each 00 factor of the Fibonacci word with 020).

Original entry on oeis.org

0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1, 0, 1, 0, 2, 0, 1
Offset: 0

Views

Author

Mahdi Saleh, Apr 07 2016

Keywords

Comments

A word constructed by replacing each 00 factor of the Fibonacci word (A003849) with 020. The obtained ternary sequence is a word with Sturmian erasures (by removing each word,the obtained binary sequence is Sturmian)[1]. By removing each of 0's or 2's, the set of replacements on the Fibonacci word, is equal to the morphisms of deriving the Fibonacci word [2]. So the obtained binary word by removing each of 0's,1's or 2's is the Fibonacci word. Since the slope of the sequential projection (sending for example one letter to 1 and all the others to 0) is 1, the factor complexity of this ternary word for each integer n>0, is n+2.[3]
The binary sequence obtained by removing all 0's from the 3-Fibonacci word: 1,2,1,1,2,1,2,1,1,2,1,2,1,1,2,1,...
From Michel Dekking, Oct 19 2016: (Start)
The sequence (a(n)) is fixed point of the morphism zeta given by zeta: 0->01, 1->02, 2->epsilon.
Here epsilon is the empty word. To see this, code the 0’s in the Fibonacci sequence followed by 0 by 5, and the 0’s followed by 1 by 6. Then add 2 after 5. This gives the morphism 1->52, 5->61, 6->61, 2->epsilon. Then injectivize, i.e., map 5 and 6 to 0.
The sequence (a(n)) is related to A108103. Let theta be the standard form of zeta: theta(1)=12, theta(2)=13, theta(3)=epsilon. Let psi be the morphism generating the version of A108103 with 2 and 3 interchanged, psi: 1->2, 2->131, 3->1. Then the unique fixed point of theta is different from the fixed points of psi, but theta and psi generate the same language, i.e., arbitrarily long words occurring in the fixed point of theta occur in the fixed points of psi. This is a nontrivial exercise (prove that 2 theta^{2n}(1) = psi^{2n}(2) 13 for all n>0).
The sequence (a(n)) is not related to A270788, which might be called the ternary Fibonacci sequence. The dynamical system generated by (a(n)) has an eigenvalue -1, whereas the system generated by A270788 is isomorphic to the Fibonacci dynamical system. (End)
The asymptotic density of the occurrences of 0, 1, and 2 is 1/2, 1/(2*phi) = A019827, and 1/(2*phi^2) = A187426 / 10, respectively, where phi is the golden ratio (A001622). The asymptotic mean of this sequence is (3-phi)/2 (A187798). - Amiram Eldar, May 28 2024

Crossrefs

Programs

  • Mathematica
    SubstitutionSystem[{0->{0,1}, 1->{0,2}, 2->{}}, {0}, {10}][[1]] (* Paolo Xausa, May 17 2024 *)
Showing 1-8 of 8 results.