cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A239798 Decimal expansion of the midsphere radius in a regular dodecahedron with unit edges.

Original entry on oeis.org

1, 3, 0, 9, 0, 1, 6, 9, 9, 4, 3, 7, 4, 9, 4, 7, 4, 2, 4, 1, 0, 2, 2, 9, 3, 4, 1, 7, 1, 8, 2, 8, 1, 9, 0, 5, 8, 8, 6, 0, 1, 5, 4, 5, 8, 9, 9, 0, 2, 8, 8, 1, 4, 3, 1, 0, 6, 7, 7, 2, 4, 3, 1, 1, 3, 5, 2, 6, 3, 0, 2, 3, 1, 4, 0, 9, 4, 5, 1, 2, 2, 4, 8, 5, 3, 6, 0, 3, 6, 0
Offset: 1

Views

Author

Stanislav Sykora, Mar 27 2014

Keywords

Comments

In a regular polyhedron, the midsphere is tangent to all edges.
Apart from leading digits the same as A019863 and A019827. - R. J. Mathar, Mar 30 2014

Examples

			1.30901699437494742410229341718281905886015458990288143106772431135263...
		

Crossrefs

Midsphere radii in Platonic solids: A020765 (tetrahedron), A020761 (octahedron), A010503 (cube), A019863 (icosahedron).

Programs

  • Maple
    Digits:=100: evalf((3+sqrt(5))/4); # Wesley Ivan Hurt, Mar 27 2014
  • Mathematica
    RealDigits[GoldenRatio^2/2,10,105][[1]] (* Vaclav Kotesovec, Mar 27 2014 *)
  • PARI
    (3+sqrt(5))/4

Formula

Equals phi^2/2, phi being the golden ratio (A001622).
Equals (3+sqrt(5))/4.
Equals lim_{n->oo} A000045(n)/A066983(n). - Dimitri Papadopoulos, Nov 23 2023
Equals Product_{k>=2} (1 + (-1)^k/A001654(k)). - Amiram Eldar, Dec 02 2024
Equals A094884^2 = A104457/2 = 10/A187799. - Hugo Pfoertner, Dec 02 2024

A244847 Decimal expansion of rho_c = (5-sqrt(5))/10, the asymptotic critical density for the hard hexagon model.

Original entry on oeis.org

2, 7, 6, 3, 9, 3, 2, 0, 2, 2, 5, 0, 0, 2, 1, 0, 3, 0, 3, 5, 9, 0, 8, 2, 6, 3, 3, 1, 2, 6, 8, 7, 2, 3, 7, 6, 4, 5, 5, 9, 3, 8, 1, 6, 4, 0, 3, 8, 8, 4, 7, 4, 2, 7, 5, 7, 2, 9, 1, 0, 2, 7, 5, 4, 5, 8, 9, 4, 7, 9, 0, 7, 4, 3, 6, 2, 1, 9, 5, 1, 0, 0, 5, 8, 5, 5, 8, 5, 5, 9, 1, 6, 2, 1, 2, 1, 7, 7, 2, 5, 0, 3
Offset: 0

Views

Author

Jean-François Alcover, Nov 12 2014

Keywords

Comments

The vertical distance between the accumulation point and the outermost point of a golden spiral inscribed inside a golden rectangle with dimensions phi and 1 along the x and y axes, respectively (the horizontal distance is A176015). - Amiram Eldar, May 18 2021
The limiting frequency of the digit 1 in the base phi representation of real numbers in the range [0,1], where phi is the golden ratio (A001622) (Rényi, 1957). - Amiram Eldar, Mar 18 2025

Examples

			0.2763932022500210303590826331268723764559381640388474275729102754589479...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 1.2 The Golden Mean, phi, p. 7.
  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.12.1 Phase transitions in Lattice Gas Models, p. 347.

Crossrefs

Essentially the same sequence of digits as A229760 and A187799.

Programs

  • Mathematica
    RealDigits[(5 - Sqrt[5])/10, 10, 102] // First

Formula

Equals 1/(sqrt(5)*phi), where phi = (1+sqrt(5))/2 = A001622. - Vaclav Kotesovec, Nov 13 2014
Equals lim_{n -> infinity} A000045(n)/A000032(n+1). - Bruno Berselli, Jan 22 2018
Equals Sum_{n>=1} A000045(3^(n-1))/A000032(3^n) = Sum_{n>=1} A045529(n-1)/A006267(n). - Amiram Eldar, Dec 20 2018
Equals 1 - A242671. - Amiram Eldar, Mar 18 2025

A229760 Decimal expansion of 25 - 10*sqrt(5).

Original entry on oeis.org

2, 6, 3, 9, 3, 2, 0, 2, 2, 5, 0, 0, 2, 1, 0, 3, 0, 3, 5, 9, 0, 8, 2, 6, 3, 3, 1, 2, 6, 8, 7, 2, 3, 7, 6, 4, 5, 5, 9, 3, 8, 1, 6, 4, 0, 3, 8, 8, 4, 7, 4, 2, 7, 5, 7, 2, 9, 1, 0, 2, 7, 5, 4, 5, 8, 9, 4, 7, 9, 0, 7, 4, 3, 6, 2, 1, 9, 5, 1, 0, 0, 5, 8, 5, 5, 8, 5, 5, 9, 1, 6, 2, 1, 2, 1, 7, 7, 2, 5, 0, 3, 0, 4, 9
Offset: 1

Views

Author

Joost Gielen, Sep 28 2013

Keywords

Comments

Apart from the first digit the same as A187799.

Examples

			2.639320225002103035908263312687237645593816403884742757291027545894790...
		

Crossrefs

Programs

A229759 Decimal expansion of (25-10*sqrt(5))/2.

Original entry on oeis.org

1, 3, 1, 9, 6, 6, 0, 1, 1, 2, 5, 0, 1, 0, 5, 1, 5, 1, 7, 9, 5, 4, 1, 3, 1, 6, 5, 6, 3, 4, 3, 6, 1, 8, 8, 2, 2, 7, 9, 6, 9, 0, 8, 2, 0, 1, 9, 4, 2, 3, 7, 1, 3, 7, 8, 6, 4, 5, 5, 1, 3, 7, 7, 2, 9, 4, 7, 3, 9, 5, 3, 7, 1, 8, 1, 0, 9, 7, 5, 5, 0, 2, 9, 2, 7, 9, 2, 7, 9, 5, 8, 1, 0, 6, 0, 8, 8, 6, 2, 5, 1, 5, 2, 4
Offset: 1

Views

Author

Joost Gielen, Sep 28 2013

Keywords

Comments

Essentially the same as A225667 and A132338. - R. J. Mathar, Sep 30 2013

Crossrefs

Formula

(25-10*sqrt(5))/2 = 25/2 - 5*sqrt(5) = 1.319660... .

A255353 Denominators in an expansion of 3 - sqrt(5) as a sum of fractions +-1/d.

Original entry on oeis.org

2, 3, 6, 15, 24, 40, 104, 168, 273, 714, 1155, 1870, 4895, 7920, 12816, 33552, 54288, 87841, 229970, 372099, 602070, 1576239, 2550408, 4126648, 10803704, 17480760, 28284465, 74049690, 119814915, 193864606, 507544127, 821223648, 1328767776
Offset: 1

Views

Author

Mohammad K. Azarian, Feb 21 2015

Keywords

Comments

The minus sign in front of a fraction is considered the sign of the numerator and hence the sign of the fraction does not appear in this sequence. We note that numerators are in A131561.

Examples

			1/(1*2) + 1/(1*3) - 1/(2*3) + 1/(3*5) + 1/(3*8) - 1/(5*8) + 1/(8*13) + 1/(8*21) - 1/(13*21) + 1/(21*34) + 1/(21*55) - 1/(34*55) + ... + = 3 - sqrt(5).
		

Crossrefs

Programs

  • Mathematica
    Table[SeriesCoefficient[x (2 + 3 x + 6 x^2 - x^3 - 8 x^5 + x^8)/((1 - x) (1 + x + x^2) (1 - 7 x^3 + x^6)), {x, 0, n}], {n, 33}] (* Michael De Vlieger, Dec 17 2015 *)
  • PARI
    Vec(x*(2+3*x+6*x^2-x^3-8*x^5+x^8)/((1-x)*(1+x+x^2)*(1-7*x^3+x^6)) + O(x^40)) \\ Colin Barker, Dec 17 2015

Formula

3 - sqrt(5) = Sum_{n>=1} 1/(F(2*n)*F(2*n+1)) + 1/(F(2*n)*F(2*n+2)) - 1/(F(2*n+1)*F(2*n+2)), where F = A000045 (Fibonacci numbers).
From Colin Barker, Dec 17 2015: (Start)
a(n) = 8*a(n-3) - 8*a(n-6) + a(n-9) for n>9.
G.f.: x*(2+3*x+6*x^2-x^3-8*x^5+x^8) / ((1-x)*(1+x+x^2)*(1-7*x^3+x^6)).
(End)

A262353 a(n) = ceiling((3-sqrt(5))*10^(2*n+1)).

Original entry on oeis.org

8, 764, 76394, 7639321, 763932023, 76393202251, 7639320225003, 763932022500211, 76393202250021031, 7639320225002103036, 763932022500210303591, 76393202250021030359083, 7639320225002103035908264, 763932022500210303590826332, 76393202250021030359082633127
Offset: 0

Views

Author

Martin Renner, Mar 24 2016

Keywords

Comments

a(n) is a special family of 2nd-order base-10 grafting integers, because every integer generated by ceiling((3-sqrt(5))*10^(2*n+1)) is a grafting integer.
A grafting number is a number whose digits, represented in base b, appear before or directly after the decimal point of its r-th root. Numbers of the simplest type deal with square roots in the decimal system.
The constant x = 3-sqrt(5) is a solution of the general grafting equation (x*b^a)^(1/r) = x + c with corresponding values r = 2, b = 10, a = 1, c = 2 (where r >= 2 is the grafting root, b >= 2 is the base in which the numbers are represented, a >= 0 is the number of places the decimal point is shifted, and c >= 0 is the constant added to the front of the result).

Examples

			sqrt(8) = 2.828427...,
sqrt(764) = 27.6405...,
sqrt(76394) = 276.39464...
		

References

  • Matt Parker, Things to make and do in the Fourth Dimension, New York (Ferrar, Strauss and Giroux), 2014, p. 62-63.

Crossrefs

Subsequence of A232087.
Cf. A187799.

Programs

  • Magma
    [Ceiling((3-Sqrt(5))*10^(2*n+1)):n in [0..14]]; // Marius A. Burtea, Aug 08 2019
  • Maple
    Digits:=2000: a:=n->ceil((3-sqrt(5))*10^(2*n+1)); seq(a(n),n=0..14);
  • Mathematica
    Table[Ceiling[(3 - Sqrt@ 5) 10^(2 n + 1)], {n, 14}] (* Michael De Vlieger, Mar 24 2016 *)
  • PARI
    a(n) = ceil((3-sqrt(5))*10^(2*n+1)); \\ Altug Alkan, Mar 24 2016
    
  • PARI
    a(n) = 30*100^n - sqrtint(10^(4*n+2)*5) \\ Charles R Greathouse IV, Jan 20 2017
    

Formula

a(n) = ceiling((3-sqrt(5))*10^(2*n+1)).

Extensions

a(0) = 8 prepended by Robert Tanniru, Aug 06 2019
Showing 1-6 of 6 results.