A055483 a(n) is the GCD of n and the reverse of n.
1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 11, 3, 1, 1, 3, 1, 1, 9, 1, 2, 3, 22, 1, 6, 1, 2, 9, 2, 1, 3, 1, 1, 33, 1, 1, 9, 1, 1, 3, 4, 1, 6, 1, 44, 9, 2, 1, 12, 1, 5, 3, 1, 1, 9, 55, 1, 3, 1, 1, 6, 1, 2, 9, 2, 1, 66, 1, 2, 3, 7, 1, 9, 1, 1, 3, 1, 77, 3, 1, 8, 9, 2, 1, 12, 1, 2, 3, 88, 1, 9, 1, 1, 3, 1, 1, 3, 1, 1, 99, 1, 101, 3, 1, 1, 3, 1, 1, 9, 1, 11, 111
Offset: 1
Examples
a(12) = 3 since gcd(12, 21) = 3. a(13) = 1 since 13 and 31 are coprime. a(101) = gcd(101, 101) = 101.
Links
- Indranil Ghosh, Table of n, a(n) for n = 1..50000 (first 1000 terms from T. D. Noe)
Crossrefs
Programs
-
Haskell
a055483 n = gcd n $ a004086 n -- Reinhard Zumkeller, Jun 18 2013
-
Magma
[Gcd(n, Seqint(Reverse(Intseq(n)))): n in [1..100]]; // Vincenzo Librandi, Oct 29 2014
-
Mathematica
gcn[n_] := GCD[n, IntegerReverse[n]]; Array[gcn, 120] (* Harvey P. Dale, Jan 23 2012 *)
-
PARI
a004086(n)=eval(concat(Vecrev(Str(n)))) a(n)=gcd(n, a004086(n)) \\ Felix Fröhlich, Oct 28 2014
-
Python
from math import gcd def a(n): return gcd(n, int(str(n)[::-1])) print([a(n) for n in range(1, 112)]) # Michael S. Branicky, Aug 31 2021
-
Scala
def reverseDigits(n: Int): Int = Integer.parseInt(n.toString.reverse) def euclGCD(a: Int, b: Int): Int = b match { case 0 => a; case n => Math.abs(euclGCD(b, a % b)) } (1 to 120).map(n => euclGCD(n, reverseDigits(n))) // Alonso del Arte, Aug 31 2021
Formula
a(n) = gcd(n, A004086(n)). - Felix Fröhlich, Oct 28 2014
3 | a(n) if 3 | n and 9 | a(n) if 9 | n. - Alonso del Arte, Aug 31 2021
Extensions
Edited by Robert G. Wilson v, Apr 10 2002
Comments