cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A061067 m-th prime prime(m) is included iff prime(m) + m is also prime.

Original entry on oeis.org

2, 3, 7, 13, 61, 79, 89, 101, 131, 139, 181, 223, 317, 349, 359, 421, 479, 503, 521, 541, 557, 569, 577, 593, 619, 641, 701, 733, 827, 863, 881, 929, 1021, 1069, 1223, 1231, 1249, 1277, 1361, 1399, 1439, 1487, 1733, 1831, 1889, 1987, 2069, 2137, 2143, 2203
Offset: 0

Views

Author

Labos Elemer, May 28 2001

Keywords

Examples

			5th term here is 61 = prime(18) and 61 + 18 = 79.
		

Crossrefs

Programs

  • Magma
    [NthPrime(n): n in [1..250] | IsPrime(NthPrime(n)+ n)]; // Vincenzo Librandi, Jan 19 2015
  • Mathematica
    Prime[Select[Range[500], PrimeQ[Prime[ # ] + # ] &]] (* Stefan Steinerberger, Jul 21 2006 *)
    Select[Prime[Range[400]],PrimeQ[#+PrimePi[#]]&] (* Harvey P. Dale, Oct 03 2016 *)
  • PARI
    { n=-1; m=0; forprime (p=2, 109597, if (isprime(p + m++), write("b061067.txt", n++, " ", p)) ) } \\ Harry J. Smith, Jul 17 2009
    

Formula

a(n) + A064402(n+1) = A061068(n+1). [corrected by Martin Fuller]

Extensions

Edited by N. J. A. Sloane at the suggestion of Andrew S. Plewe, Aug 23 2007

A231326 Primes p such that p - 2*k is also prime, where p is k-th prime.

Original entry on oeis.org

17, 19, 23, 37, 47, 67, 71, 73, 83, 89, 97, 113, 131, 137, 139, 149, 151, 157, 167, 179, 181, 197, 199, 223, 233, 263, 307, 331, 353, 379, 397, 419, 421, 439, 443, 457, 461, 463, 503, 557, 587, 613, 631, 641, 643, 659, 661, 677, 701, 719, 743, 761, 773, 839, 863
Offset: 1

Views

Author

K. D. Bajpai, Nov 07 2013

Keywords

Examples

			a(2)= 19 which is 8th prime. prime(8)-2*8= 19-16= 3 which is also prime.
a(6)= 67 which is 19th prime. prime(19)-2*19= 67-38= 29 which is also prime.
		

Crossrefs

Cf. A061068 (primes: prime(m) plus its subscript).
Cf. A064402 (numbers n: prime(n)+n is prime).
Cf. A227420 (primes: p - pi(p) is also prime).
Cf. A231232 (primes: prime(k)+2*k is also prime).

Programs

  • Maple
    KD := proc() local a,b; a:= ithprime(n); b := a-2*n; if isprime(b) then RETURN (a); fi;end: seq(KD(),n=1..500);
  • Mathematica
    TK = Select[Table[{Prime[n], Prime[n] - 2*n}, {n, 200}], PrimeQ[#[[2]]] &]; Transpose[TK][[1]]
Showing 1-2 of 2 results.