cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A227988 Decimal expansion of Sum_{n >= 1} sigma_1(n)/n!.

Original entry on oeis.org

3, 5, 2, 7, 0, 0, 0, 4, 7, 1, 8, 5, 2, 9, 5, 2, 8, 2, 9, 7, 6, 1, 5, 3, 6, 7, 9, 1, 7, 6, 9, 3, 2, 6, 2, 0, 3, 7, 6, 3, 5, 6, 4, 3, 4, 4, 9, 5, 2, 4, 0, 8, 2, 7, 7, 6, 0, 5, 7, 1, 7, 8, 2, 0, 6, 1, 9, 2, 1, 5, 4, 6, 3, 8, 0, 4, 1, 8, 8, 6, 1, 4, 8, 2, 3, 4, 1
Offset: 1

Views

Author

Michel Lagneau, Aug 02 2013

Keywords

Comments

Problem No. 45 from P. Erdős (see the 1963 link). The problem is "is Sum_{n >= 1} sigma_k(n)/n! an irrational number where sigma_k(n) is the sum of the k-th power of divisors of n?" This property has been proved with k = 1 and 2 (see Breusch link for the proof).

Examples

			3.52700047185295282976153...
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section B14.

Crossrefs

Programs

  • Maple
    with(numtheory):Digits:=200: s:=evalf(sum('sigma(i)/i!', 'i'=1..500)):print(s):
  • Mathematica
    RealDigits[N[Sum[DivisorSigma[1,n]/n!, {n, 0, 500}], 200]][[1]]
  • PARI
    suminf(n=1, sigma(n)/n!) \\ Michel Marcus, Sep 16 2017

A335763 Decimal expansion of Sum_{k>=1} sigma_2(k)/2^k where sigma_2(k) is the sum of squares of divisors of k (A001157).

Original entry on oeis.org

7, 0, 9, 9, 2, 8, 5, 1, 7, 8, 8, 9, 0, 9, 0, 7, 1, 1, 4, 0, 3, 3, 1, 2, 5, 0, 2, 2, 1, 6, 4, 7, 5, 3, 6, 6, 3, 1, 5, 7, 6, 0, 8, 8, 3, 3, 2, 1, 1, 8, 9, 5, 9, 7, 8, 8, 3, 9, 2, 3, 7, 7, 4, 2, 8, 8, 9, 1, 2, 8, 8, 9, 1, 1, 2, 2, 6, 4, 5, 8, 7, 1, 7, 3, 5, 5, 4
Offset: 1

Views

Author

Amiram Eldar, Jun 21 2020

Keywords

Examples

			7.099285178890907114033125022164753663157608833211895...
		

Crossrefs

Programs

  • Maple
    evalf(add( (1/2)^(n^2)*( n^2*(8^n) - ((n-1)^2 - 2)*4^n - ((n+1)^2 - 2)*(2^n) + n^2 )/(2^n - 1)^3, n = 1..20 ), 100); # Peter Bala, Jan 22 2021
  • Mathematica
    RealDigits[Sum[n^2/(2^n - 1), {n, 1, 500}], 10, 100][[1]]

Formula

Equals Sum_{k>=1} k^2/(2^k - 1).
Faster converging series: Sum_{n >= 1} (1/2)^(n^2)*( n^2*(8^n) - ((n-1)^2 - 2)*4^n - ((n+1)^2 - 2)*(2^n) + n^2 )/(2^n - 1)^3. - Peter Bala, Jan 19 2021

A307036 Decimal expansion of Sum_{k >= 1} sigma_3(k)/k!, where sigma_3(k) is the sum of cubes of the divisors of k (A001158).

Original entry on oeis.org

1, 4, 6, 9, 3, 5, 3, 2, 8, 4, 7, 2, 6, 9, 2, 8, 2, 2, 3, 3, 1, 2, 3, 5, 5, 1, 3, 6, 4, 9, 8, 2, 0, 5, 6, 6, 3, 8, 8, 6, 3, 1, 9, 3, 9, 5, 7, 6, 7, 0, 3, 4, 5, 8, 4, 8, 5, 8, 3, 8, 8, 1, 7, 0, 5, 3, 1, 5, 3, 0, 6, 2, 6, 3, 5, 4, 5, 9, 9, 5, 3, 7, 4, 4, 0, 1, 8
Offset: 2

Views

Author

Amiram Eldar, Mar 21 2019

Keywords

Comments

Its irrationality was conjectured by Erdős and Kac in 1953 and was proved by Schlage-Puchta in 2006 and Friedlander et al. in 2007.

Examples

			14.6935328472692822331235513649820566388631939576...
		

Crossrefs

Programs

  • Mathematica
    RealDigits[N[Sum[DivisorSigma[3, n]/n!, {n, 1, 500}], 100]][[1]]
  • PARI
    suminf(k=1, sigma(k, 3)/k!) \\ Michel Marcus, Mar 21 2019

A359060 Decimal expansion of Sum_{n >= 1} sigma_4(n)/n!.

Original entry on oeis.org

4, 2, 3, 0, 1, 0, 4, 7, 5, 0, 3, 7, 3, 3, 5, 0, 8, 0, 6, 6, 8, 6, 4, 2, 8, 4, 0, 6, 2, 5, 3, 0, 7, 6, 4, 5, 3, 0, 5, 9, 5, 6, 7, 0, 6, 2, 2, 4, 9, 3, 3, 2, 3, 1, 5, 5, 1, 1, 8, 8, 7, 6, 9, 4, 9, 4, 2, 6, 8, 9, 9, 1, 3, 1, 9, 7, 6, 5, 8, 1, 2
Offset: 2

Views

Author

Keywords

Comments

This constant's irrationality was conjectured by Erdős and Kac in 1953 and proved by Pratt in 2022.

Examples

			42.301047503733508066864284062530764530595670622493323155118876949426899131....
		

Crossrefs

Sum_{n >= 1} sigma_k(n)/n!: A227988 (k=1), A227989 (k=2), A307036 (k=3), this sequence (k=4).

Programs

  • Mathematica
    RealDigits[N[Sum[DivisorSigma[4, n]/n!, {n, 1, 500}], 120]][[1]] (* Amiram Eldar, Jun 21 2023 *)
  • PARI
    suminf(n=1,sigma(n,4)/n!)

A371133 Decimal expansion of Sum_{n>=1} d(n)/n!, where d(n) is the number of divisors of n.

Original entry on oeis.org

2, 4, 8, 1, 0, 6, 1, 0, 1, 9, 7, 9, 0, 7, 6, 2, 6, 9, 7, 9, 3, 7, 4, 4, 7, 6, 9, 6, 3, 9, 8, 6, 5, 7, 3, 9, 5, 6, 8, 6, 8, 9, 7, 7, 6, 1, 2, 1, 7, 1, 3, 1, 6, 2, 0, 7, 2, 3, 6, 9, 3, 3, 7, 1, 7, 5, 5, 2, 0, 4, 4, 1, 0, 9, 0, 9, 3, 0, 3, 3, 3, 6, 9, 2, 6, 7, 2, 0, 2, 4, 8, 3, 2, 4, 7, 1, 2, 9, 3, 8, 4, 8, 6, 4, 4
Offset: 1

Views

Author

Amiram Eldar, Mar 12 2024

Keywords

Comments

This constant is irrational (Erdős and Straus, 1971).

Examples

			2.48106101979076269793744769639865739568689776121713...
		

Crossrefs

Sum_{n>=1} sigma_k(n)/n!: this sequence (k=0), A227988 (k=1), A227989 (k=2), A307036 (k=3), A359060 (k=4).

Programs

  • Maple
    with(numtheory); evalf(Sum(tau(n)/factorial(n), n = 1 .. infinity), 120)
  • Mathematica
    RealDigits[N[Sum[DivisorSigma[0, n]/n!, {n, 1, 500}], 120]][[1]]
  • PARI
    suminf(k=1,numdiv(k)/k!)

Formula

Equals Sum_{j,k>=1} 1/(j*k)! (Shamos, 2011, p. 4).
Showing 1-5 of 5 results.