A228564 Largest odd divisor of n^2 + 1.
1, 1, 5, 5, 17, 13, 37, 25, 65, 41, 101, 61, 145, 85, 197, 113, 257, 145, 325, 181, 401, 221, 485, 265, 577, 313, 677, 365, 785, 421, 901, 481, 1025, 545, 1157, 613, 1297, 685, 1445, 761, 1601, 841, 1765, 925, 1937, 1013, 2117, 1105, 2305, 1201, 2501, 1301, 2705
Offset: 0
Examples
A002522(3) = 3^2+1 = 10 => a(3) = 10/2 = 5.
Links
- Jeremy Gardiner, Table of n, a(n) for n = 0..1000
- Wikipedia, Quasi-polynomial.
- Index entries for linear recurrences with constant coefficients, signature (0,3,0,-3,0,1).
Programs
-
BASIC
for n = 0 to 45 : t=n^2+1 x: if not t mod 2 then t=t/2 : goto x print str$(t);", "; : next n print end
-
GAP
List([0..60],n->NumeratorRat((n^2+1)/(n+1))); # Muniru A Asiru, Feb 20 2019
-
Magma
[(n^2+1)*(3+(-1)^n)/4: n in [0..60]]; // Bruno Berselli, Aug 26 2013
-
Magma
[Denominator(2*n^2/(n^2+1)): n in [0..60]]; // Vincenzo Librandi, Aug 19 2014
-
Maple
lod:= t -> t/2^padic:-ordp(t,2): seq(lod(n^2+1),n=0..60); # Robert Israel, Aug 19 2014
-
Mathematica
Table[(n^2 + 1) (3 + (-1)^n)/4, {n, 0, 60}] (* Bruno Berselli, Aug 26 2013 *)
-
PARI
a(n)=if(n<2,n>0,m=n\4;[4*a(2*m)-3,2*a(2*m)+4*m-1,4*a(2*m)+16*m+1,2*a(2*m)+12*m+3][(n%4)+1]) \\ Ralf Stephan, Aug 26 2013
-
PARI
a(n)=(n^2+1)/2^valuation(n^2+1,2) \\ Ralf Stephan, Aug 26 2013
-
Sage
[(n^2+1)*(3+(-1)^n)/4 for n in (0..60)] # G. C. Greubel, Feb 20 2019
Formula
From Ralf Stephan, Aug 26 2013: (Start)
a(4n) = 4*a(2n) - 3.
a(4n+1) = 2*a(2n) + 4*n - 1.
a(4n+2) = 4*a(2n) + 16*n + 1.
a(4n+3) = 2*a(2n) + 12*n + 3. (End)
From Bruno Berselli, Aug 26 2013: (Start)
G.f.: (1 + x + 2*x^2 + 2*x^3 + 5*x^4 + x^5) / (1-x^2)^3.
a(n) = 3*a(n-2) -3*a(n-4) +a(n-6).
a(n) = (n^2+1)*(3+(-1)^n)/4. (End)
From Peter Bala, Feb 14 2019: (Start)
a(n) = numerator((n^2 + 1)/(n + 1)).
a(n) is a quasi-polynomial in n: a(2*n) = 4*n^2 + 1; a(2*n + 1) = 2*n^2 + 2*n + 1. (End)
From Amiram Eldar, Aug 09 2022: (Start)
a(n) = numerator((n^2+1)/2).
Sum_{n>=0} 1/a(n) = (1 + coth(Pi/2)*Pi/2 + tanh(Pi/2)*Pi)/2. (End)
E.g.f.: ((2 + x + 2*x^2)*cosh(x) + (1 + x)^2*sinh(x))/2. - Stefano Spezia, Aug 04 2025
Comments