A228572 Triangle read by rows, formed from antidiagonals of triangle A228570: T(n,k) = A034851(n-3*k, k) for n >= 0 and 0 <= k <= floor(n/4).
1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 3, 1, 1, 3, 2, 1, 4, 4, 1, 4, 6, 1, 5, 9, 1, 1, 5, 12, 2, 1, 6, 16, 6, 1, 6, 20, 10, 1, 7, 25, 19, 1, 1, 7, 30, 28, 3, 1, 8, 36, 44, 9, 1, 8, 42, 60, 19, 1, 9, 49, 85, 38, 1, 1, 9, 56, 110, 66, 3
Offset: 0
Examples
The first few rows of triangle T(n, k) are: n/k: 0, 1, 2, 3 0: 1 1: 1 2: 1 3: 1 4: 1, 1 5: 1, 1 6: 1, 2 7: 1, 2 8: 1, 3, 1 9: 1, 3, 2 10: 1, 4, 4 11: 1, 4, 6 12: 1, 5, 9, 1
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..989
Programs
-
Maple
T := proc(n, k) option remember: if n <0 then return(0) fi: if k < 0 or k > floor(n/4) then return(0) fi: A034851(n-3*k, k) end: A034851 := proc(n, k) option remember; local t; if k = 0 or k = n then return(1) fi; if n mod 2 = 0 and k mod 2 = 1 then t := binomial(n/2-1, (k-1)/2) else t := 0; fi; A034851(n-1, k-1) + A034851(n-1, k) - t; end: seq(seq(T(n, k), k=0..floor(n/4)), n=0..21); # End first program T := proc(n,k) option remember: if n=0 and k=0 or n=1 and k=0 or n=2 and k=0 or n=3 and k=0 then return(1) fi: if k <0 or k > floor(n/4) then return(0) fi: if type(n, odd) and type(k, odd) then procname(n-1,k) + procname(n-4, k-1) - binomial((n+3)/2 - 3*(k+1)/2 - 1,(k+1)/2-1) else procname(n-1, k) + procname(n-4, k-1) fi: end: seq(seq(T(n, k), k=0..floor(n/4)), n=0..21); # End second program
-
Mathematica
T[n_, k_] := (Binomial[n - 3k, k] + Boole[EvenQ[k] || EvenQ[n]]* Binomial[(n - 3k - Mod[k, 2] - Mod[n, 2])/2, Quotient[k, 2]])/2; Table[T[n, k], {n, 0, 20}, {k, 0, Quotient[n, 4]}] // Flatten (* Jean-François Alcover, Oct 06 2017, after Andrew Howroyd *)
-
PARI
T(n,k)={(binomial(n-3*k,k) + (k%2==0||n%2==0)*binomial((n-3*k-k%2-n%2)/2,k\2))/2} for(n=1,20,for(k=0,(n\4), print1(T(n,k), ", "));print) \\ Andrew Howroyd, May 29 2017
Formula
T(n, k) = A034851(n-3*k, k) for n >= 0 and 0 <= k <= floor(n/4).
T(n, k) = T(n-1, k) + T(n-4, k-1) - C((n+3)/2 - 3*(k+1)/2-1, (k+1)/2-1), where the last term is present only if n odd and k odd; T(0, 0) = 1, T(1, 0) = 1, T(2, 0) = 1, T(3, 0) = 1, T(n, k) = 0 for n < 0 and T(n, k) = 0 for k < 0 and k > floor(n/4).
Comments