cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A077610 Triangle in which n-th row lists unitary divisors of n.

Original entry on oeis.org

1, 1, 2, 1, 3, 1, 4, 1, 5, 1, 2, 3, 6, 1, 7, 1, 8, 1, 9, 1, 2, 5, 10, 1, 11, 1, 3, 4, 12, 1, 13, 1, 2, 7, 14, 1, 3, 5, 15, 1, 16, 1, 17, 1, 2, 9, 18, 1, 19, 1, 4, 5, 20, 1, 3, 7, 21, 1, 2, 11, 22, 1, 23, 1, 3, 8, 24, 1, 25, 1, 2, 13, 26, 1, 27, 1, 4, 7, 28, 1, 29, 1, 2, 3, 5, 6, 10, 15, 30
Offset: 1

Views

Author

Eric W. Weisstein, Nov 11 2002

Keywords

Comments

n-th row = n-th row of A165430 without repetitions. - Reinhard Zumkeller, Mar 04 2013
Denominators of sequence of all positive rational numbers ordered as follows: let m = p(i(1))^e(i(1))*...*p(i(k))^e(i(k)) be the prime factorization of m. Let S(m) be the vector of rationals p(i(k+1-j))^e(i(k+1-j))/p(i(j))^e(i(j)) for j = 1..k. The sequence (a(n)) is the concatenation of vectors S(m) for m = 1, 2, ...; for numerators see A229994. - Clark Kimberling, Oct 31 2013
The concept of unitary divisors was introduced by the Indian mathematician Ramaswamy S. Vaidyanathaswamy (1894-1960) in 1931. He called them "block factors". The term "unitary divisor" was coined by Cohen (1960). - Amiram Eldar, Mar 09 2024

Examples

			1;
1, 2;
1, 3;
1, 4;
1, 5;
1, 2, 3, 6;
1, 7;
1, 8;
1, 9;
1, 2, 5, 10;
1, 11;
		

Crossrefs

Cf. A037445, A027750, A034444 (row lengths), A034448 (row sums); A206778.

Programs

  • Haskell
    a077610 n k = a077610_row n !! k
    a077610_row n = [d | d <- [1..n], let (n',m) = divMod n d,
                         m == 0, gcd d n' == 1]
    a077610_tabf = map a077610_row [1..]
    -- Reinhard Zumkeller, Feb 12 2012
    
  • Maple
    with(numtheory);
    # returns the number of unitary divisors of n and a list of them, from N. J. A. Sloane, May 01 2013
    f:=proc(n)
    local ct,i,t1,ans;
    ct:=0; ans:=[];
    t1:=divisors(n);
    for i from 1 to nops(t1) do
    d:=t1[i];
    if igcd(d,n/d)=1 then ct:=ct+1; ans:=[op(ans),d]; fi;
    od:
    RETURN([ct,ans]);
    end;
    # Alternatively:
    isUnitary := (n, d) -> igcd(n, d) = d and igcd(n/d, d) = 1:
    aList := n -> select(k -> isUnitary(n, k), [seq(1..n)]): # Peter Luschny, Jun 13 2025
  • Mathematica
    row[n_] := Select[ Divisors[n], GCD[#, n/#] == 1 &]; Table[row[n], {n, 1, 30}] // Flatten (* Jean-François Alcover, Oct 22 2012 *)
  • PARI
    row(n)=my(f=factor(n),k=#f~); Set(vector(2^k,i, prod(j=1,k, if(bittest(i,j-1),1,f[j,1]^f[j,2]))))
    v=[];for(n=1,20,v=concat(v,row(n)));v \\ Charles R Greathouse IV, Sep 02 2015
    
  • PARI
    row(n) = {my(d = divisors(n)); select(x->(gcd(x, n/x)==1), d);} \\ Michel Marcus, Oct 11 2015
    
  • Python
    from math import gcd
    def is_unitary(n, d) -> bool: return gcd(n, d) == d and gcd(n//d, d) == 1
    def aList(n) -> list[int]: return [k for k in range(1, n+1) if is_unitary(n, k)]
    for n in range(1, 31): print(aList(n))  # Peter Luschny, Jun 13 2025

Formula

d is unitary divisor of n <=> gcd(n, d) = d and gcd(n/d, d) = 1. - Peter Luschny, Jun 13 2025

A071974 Numerator of rational number i/j such that Sagher map sends i/j to n.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 1, 3, 1, 1, 2, 1, 1, 1, 4, 1, 3, 1, 2, 1, 1, 1, 1, 5, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 6, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1, 1, 4, 7, 5, 1, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 3, 8, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 5, 2, 1, 1, 1, 4, 9, 1, 1, 2, 1, 1, 1, 1, 1, 3, 1, 2, 1, 1, 1, 1, 1, 7, 3, 10, 1, 1, 1, 1
Offset: 1

Views

Author

N. J. A. Sloane, Jun 19 2002

Keywords

Comments

The Sagher map sends Product p_i^e_i / Product q_i^f_i (p_i and q_i being distinct primes) to Product p_i^(2e_i) * Product q_i^(2f_i-1). This is multiplicative.

Examples

			The Sagher map sends the following fractions to 1, 2, 3, 4, ...: 1/1, 1/2, 1/3, 2/1, 1/5, 1/6, 1/7, 1/4, 3/1, ...
		

Crossrefs

Cf. A071975. Differs from A056622 at a(32).
For other bijective mappings from integers to positive rationals see A002487, A020652/A020653, A038568/A038569, A229994/A077610, A295515.
Cf. A307868.

Programs

  • Haskell
    a071974 n = product $ zipWith (^) (a027748_row n) $
       map (\e -> (1 - e `mod` 2) * e `div` 2) $ a124010_row n
    -- Reinhard Zumkeller, Jun 15 2012
    
  • Mathematica
    f[{p_, a_}] := If[EvenQ[a], p^(a/2), 1]; a[n_] := Times@@(f/@FactorInteger[n])
    Table[Sqrt@ SelectFirst[Reverse@ Divisors@ n, And[IntegerQ@ Sqrt@ #, CoprimeQ[#, n/#]] &], {n, 104}] (* Michael De Vlieger, Dec 06 2018 *)
  • PARI
    a(n)=local(v=factor(n)~); prod(k=1,length(v),if(v[2,k]%2,1,v[1,k]^(v[2,k]/2)))
    
  • Python
    from math import prod
    from sympy import factorint
    def A071974(n): return prod(p**(e>>1) for p, e in factorint(n).items() if e&1^1) # Chai Wah Wu, Jul 27 2024

Formula

If n=Product p_i^e_i, then a_n=Product p_i^f(e_i), where f(n)=n/2 if n is even and f(n)=0 if n is odd. - Reiner Martin, Jul 08 2002
a(n^2) = n, A071975(n^2) = 1, cf. A000290; a(2*(2*n-1)^2) = 2*n+1, A071975(2*(2*n-1)^2) = 2, cf. A077591. - Reinhard Zumkeller, Jul 10 2011
From Amiram Eldar, Nov 02 2023, Jul 26 2024: (Start)
a(n) = sqrt(A350388(n)) (square root of largest unitary divisor of n that is a square).
Dirichlet g.f.: zeta(2*s) * zeta(2*s-1) * Product_{p prime} (1 + 1/p^s - 1/p^(2*s) - 1/p^(3*s-1)). (End)
From Vaclav Kotesovec, May 05 2025: (Start)
Let f(s) = Product_{p prime} (1 - (p^s + p)/((p^s + 1)*p^(2*s))).
Dirichlet g.f.: zeta(s) * zeta(2*s-1) * f(s).
Sum_{k=1..n} a(k) ~ f(1) * n * (log(n) + 3*gamma - 1 + f'(1)/f(1)) / 2, where
f(1) = A307868 = Product_{p prime} (1 - 2/(p*(1+p))) = 0.4716806136129978680752356330804820874259263820069868836357372554177321...
f'(1) = f(1) * Sum_{p prime} (5*p+3)*log(p) / ((p+1)*(p^2+p-2)) = f(1) * 2.1244279471327068377850377690765768532203174482128717024402373817115555...
and gamma is the Euler-Mascheroni constant A001620. (End)

Extensions

More terms from Reiner Martin, Jul 08 2002
Additional references supplied by Kevin Ryde added by N. J. A. Sloane, May 31 2012

A229996 For every positive integer m, let u(m) = (d(1),d(2),...,d(k)) be the unitary divisors of m. The sequence (a(n)) consists of successive numbers m which d(k)/d(1) + d(k-1)/d(2) + ... + d(k)/d(1) is an integer.

Original entry on oeis.org

1, 10, 65, 130, 260, 340, 1105, 1972, 2210, 4420, 8840, 9860, 15650, 20737, 32045, 41474, 44200, 51272, 55250, 64090, 75140, 82948, 103685, 128180, 207370, 207553, 221000, 256360, 352529, 414740, 415106, 512720, 532100, 705058, 759025, 813800, 829480, 830212
Offset: 1

Views

Author

Clark Kimberling, Oct 31 2013

Keywords

Comments

The integer sums d(k)/d(1) + d(k-1)/d(2) + ... + d(k)/d(1) are given by A229999. - Clark Kimberling, Jun 16 2018
Also numbers m such that the sum of the squares of the unitary divisors of m is divisible by m (the unitary version of A046762). - Amiram Eldar, Jun 16 2018

Examples

			The first 10 sums: 1, 5/2, 10/3, 17/4, 26/5, 25/3, 50/7, 65/8, 82/9, 13, so that a(1) = 1 and a(10) = 13.
		

Crossrefs

Programs

  • Mathematica
    z = 1000; r[n_] := Select[Divisors[n], GCD[#, n/#] == 1 &]; k[n_] := Length[r[n]];
    t[n_] := Table[r[n][[k[n] + 1 - i]]/r[n][[k[1] + i - 1]], {i, 1, k[n]}];
    s = Table[Plus @@ t[n], {n, 1, z}]; a[n_] := If[IntegerQ[s[[n]]], 1, 0]; u = Table[a[n], {n, 1, z}]; Flatten[Position[u, 1]]  (* A229996 *)
    usigma2[n_] :=  If[n == 1, 1, Times @@ (1 + Power @@@ FactorInteger[n]^2)]; seqQ[n_] := Divisible[usigma2[n], n]; Select[Range[10^6], seqQ] (* Amiram Eldar, Jun 16 2018 *)
  • PARI
    is(n) = {my(f = factor(n)); !(prod(i = 1, #f~, f[i,1]^(2*f[i,2]) + 1) % n);} \\ Amiram Eldar, Jun 16 2024

Extensions

Definition corrected by Clark Kimberling, Jun 16 2018

A305995 Rectangular array read by downward antidiagonals; row n consists of the numbers m such that n is the denominator of d(k)/d(1) + d(k-1)/d(2) + ... + d(k)/d(1), where d(1),d(2),...,d(k) are the unitary divisors of m.

Original entry on oeis.org

1, 10, 2, 65, 68, 3, 130, 520, 6, 4, 260, 1768, 15, 40, 5, 340, 2600, 30, 104, 50, 12, 1105, 6760, 60, 1040, 1700, 120, 7, 1972, 17680, 150, 20560, 3250, 312, 14, 8, 2210, 62600, 195, 35360, 7825, 600, 35, 2080, 9, 4420, 165896, 204, 85280, 27625, 3120, 70, 4112, 18, 20
Offset: 1

Views

Author

Clark Kimberling, Jun 16 2018

Keywords

Comments

Every positive integer occurs exactly once, so that as a sequence, this is a permutation of the positive integers. The numbers in row n are divisible by n; see A305996 for the quotients.

Examples

			Northwest corner:
   1    10    65   130    260     340    1105
   2    68   520  1768   2600    6760   17680
   3     6    15    30     60     150     195
   4    40   104  1040  20560   35360   85280
   5    50  1700  3250   7825   27625   31300
  12   120   312   600   3120   61680  106080
   7    14    35    70    140     175     350
   8  2080  4112  6560  32800   38048   52000
   9    18    90   369    585     612     738
		

Crossrefs

Programs

  • Mathematica
    t[n_] := Table[r[n][[k[n] + 1 - i]]/r[n][[k[1] + i - 1]], {i, 1, k[n]}];
    s = Table[Total[t[n]], {n, 1, z}]; a[n_] := If[IntegerQ[s[[n]]], 1, 0];
    d = Denominator[s];
    row[n_] := Flatten[Position[d, n]]
    TableForm[Table[row[n], {n, 1, 10}]]  (* A305995 array *)
    r1[n_, k_] := row[n][[k]]; zz = 10;
    Flatten[Table[r1[n - k + 1, k], {n, zz}, {k, n, 1, -1}]]  (* A305995 sequence *)

A306010 Let S(m) = d(k)/d(1) + ... + d(1)/d(k), where d(1)..d(k) are the unitary divisors of m; then a(n) is the number m when the sums S(m) are arranged in increasing order.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 6, 9, 11, 10, 13, 12, 16, 17, 15, 14, 19, 20, 18, 23, 21, 25, 27, 24, 22, 29, 28, 31, 32, 26, 33, 37, 35, 36, 41, 40, 34, 43, 30, 39, 47, 44, 45, 38, 49, 53, 48, 52, 51, 46, 55, 56, 59, 42, 61, 50, 57, 64, 63, 67, 54, 65, 71, 68, 58, 73
Offset: 1

Views

Author

Clark Kimberling, Jun 16 2018

Keywords

Comments

This is a permutation of the positive integers.

Examples

			The first 8 pairs {m,S(m)} are {1, 1}, {2, 5/2}, {3, 10/3}, {4, 17/4}, {5, 26/5}, {6, 25/3}, {7, 50/7}, {8, 65/8}. When the numbers S(m) are arranged in increasing order, the pairs are {1, 1}, {2, 5/2}, {3, 10/3}, {4, 17/4}, {5, 26/5}, {7, 50/7}, {8, 65/8}, {6, 25/3}, so that the first 8 terms of (a(n)) are 1,2,3,4,5,7,8,6.
		

Crossrefs

Programs

  • Mathematica
    z = 100; r[n_] := Select[Divisors[n], GCD[#, n/#] == 1 &];
    k[n_] := Length[r[n]];
    t[n_] := Table[r[n][[k[n] + 1 - i]]/r[n][[k[1] + i - 1]], {i, 1, k[n]}];
    s = Table[{n, Total[t[n]]}, {n, 1, z}]
    v = SortBy[s, Last]
    v1 = Table[v[[n]][[1]], {n, 1, z}]  (* A306010 *)
    w = Table[v[[n]][[2]], {n, 1, z}];
    Numerator[w]    (* A306011 *)
    Denominator[w]  (* A306012 *)

A306011 Let S(m) = d(k)/d(1) + ... + d(1)/d(k), where d(1)..d(k) are the unitary divisors of m; then a(n) is the numerator of S(m) when all the numbers S(m) are arranged in increasing order.

Original entry on oeis.org

1, 5, 10, 17, 26, 50, 65, 25, 82, 122, 13, 170, 85, 257, 290, 52, 125, 362, 221, 205, 530, 500, 626, 730, 325, 305, 842, 425, 962, 1025, 425, 1220, 1370, 260, 697, 1682, 169, 725, 1850, 130, 1700, 2210, 1037, 2132, 905, 2402, 2810, 1285, 1445, 2900, 1325
Offset: 1

Views

Author

Clark Kimberling, Jun 16 2018

Keywords

Examples

			The first 8 pairs {m,S(m)} are {1, 1}, {2, 5/2}, {3, 10/3}, {4, 17/4}, {5, 26/5}, {6, 25/3}, {7, 50/7}, {8, 65/8}. When the numbers S(m) are arranged in increasing order, the pairs are {1, 1}, {2, 5/2}, {3, 10/3}, {4, 17/4}, {5, 26/5}, {7, 50/7}, {8, 65/8}, {6, 25/3}, so that the first 8 numerators are 1,5,10,17,26,50,65,25.
		

Crossrefs

Programs

  • Mathematica
    z = 100; r[n_] := Select[Divisors[n], GCD[#, n/#] == 1 &];
    k[n_] := Length[r[n]];
    t[n_] := Table[r[n][[k[n] + 1 - i]]/r[n][[k[1] + i - 1]], {i, 1, k[n]}];
    s = Table[{n, Total[t[n]]}, {n, 1, z}]
    v = SortBy[s, Last]
    v1 = Table[v[[n]][[1]], {n, 1, z}]  (* A306010 *)
    w = Table[v[[n]][[2]], {n, 1, z}];
    Numerator[w]    (* A306011 *)
    Denominator[w]  (* A306012 *)

A306012 Let S(m) = d(k)/d(1) + ... + d(1)/d(k), where d(1)..d(k) are the unitary divisors of m; then a(n) is the denominator of S(m) when all the numbers S(m) are arranged in increasing order.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 3, 9, 11, 1, 13, 6, 16, 17, 3, 7, 19, 10, 9, 23, 21, 25, 27, 12, 11, 29, 14, 31, 32, 13, 33, 37, 7, 18, 41, 4, 17, 43, 3, 39, 47, 22, 45, 19, 49, 53, 24, 26, 51, 23, 55, 28, 59, 21, 61, 5, 57, 64, 63, 67, 27, 1, 71, 2, 29, 73, 3, 36, 69
Offset: 1

Views

Author

Clark Kimberling, Jun 16 2018

Keywords

Examples

			The first 8 pairs {m,S(m)} are {1, 1}, {2, 5/2}, {3, 10/3}, {4, 17/4}, {5, 26/5}, {6, 25/3}, {7, 50/7}, {8, 65/8}. When the numbers S(m) are arranged in increasing order, the pairs are {1, 1}, {2, 5/2}, {3, 10/3}, {4, 17/4}, {5, 26/5}, {7, 50/7}, {8, 65/8}, {6, 25/3}, so that the first 8 denominators are 1,2,3,4,5,7,8,3.
		

Crossrefs

Programs

  • Mathematica
    z = 100; r[n_] := Select[Divisors[n], GCD[#, n/#] == 1 &];
    k[n_] := Length[r[n]];
    t[n_] := Table[r[n][[k[n] + 1 - i]]/r[n][[k[1] + i - 1]], {i, 1, k[n]}];
    s = Table[{n, Total[t[n]]}, {n, 1, z}]
    v = SortBy[s, Last]
    v1 = Table[v[[n]][[1]], {n, 1, z}]  (* A306010 *)
    w = Table[v[[n]][[2]], {n, 1, z}];
    Numerator[w]    (* A306011 *)
    Denominator[w]  (* A306012 *)

A229999 For every positive integer m, let u(m) = (d(1),d(2),...,d(k)) be the unitary divisors of m. The sequence (a(n)) consists of integers of the form d(k)/d(1) + d(k-1)/d(2) + ... + d(k)/d(1).

Original entry on oeis.org

1, 13, 68, 170, 289, 377, 1160, 2105, 2900, 4930, 9425, 10946, 19594, 20740, 33680, 51850, 45385, 52625, 69716, 84200, 83522, 88145, 107848, 143140, 269620, 208520, 226577, 273650, 353800, 458354, 521300, 540985, 568226, 884500, 760328, 832745, 876265
Offset: 1

Views

Author

Clark Kimberling, Oct 31 2013

Keywords

Comments

The values of m for which d(k)/d(1) + d(k-1)/d(2) + ... + d(k)/d(1) is an integer are given by A229996. - Clark Kimberling, Jun 16 2018

Examples

			a(2) = 13 = 10/1 + 5/2 + 2/5 + 1/10.
		

Crossrefs

Programs

  • Mathematica
    z = 10000; r[n_] := r[n] = Select[Divisors[n], GCD[#, n/#] == 1 &];
    k[n_] := f[n] = Length[r[n]]; t[n_] := t[n] = Table[r[n][[k[n] + 1 - i]]/r[n][[k[1] + i - 1]], {i, 1, k[n]}]; s = Table[Plus @@ t[n], {n, 1, z}]; a[n_] := a[n] = If[IntegerQ[s[[n]]], 1, 0]; u = Table[a[n], {n, 1, z}]; v = Flatten[Position[u, 1]]  (* A229996 *)
    s[[v]] (* A229999 *)

Extensions

Definition corrected by Clark Kimberling, Jun 16 2018

A305996 Rectangular array, by antidiagonals; row n consists of the numbers R(n)/n, where R(n) is row n of the array at A305995.

Original entry on oeis.org

1, 10, 1, 65, 34, 1, 130, 260, 2, 1, 260, 884, 5, 10, 1, 340, 1300, 10, 26, 10, 2, 1105, 3380, 20, 260, 340, 20, 1, 1972, 8840, 50, 5140, 650, 52, 2, 1, 2210, 31300, 65, 8840, 1565, 100, 5, 260, 1, 4420, 82948, 68, 21320, 5525, 520, 10, 514, 2, 2
Offset: 1

Views

Author

Clark Kimberling, Jun 16 2018

Keywords

Examples

			Northwest corner:
  1  10   65  130   260    340   1105
  1  34  260  884  1300   3380   8840
  1   2    5   10    20     50     65
  1  10   26  260  5140   8840  21430
  1  10  340  650  1565   5525   6260
  2  30   52  100   520  10280  17680
  1   2    5   10    20     25     50
		

Crossrefs

Programs

  • Mathematica
    z = 3000; r[n_] := Select[Divisors[n], GCD[#, n/#] == 1 &]; k[n_] := Length[r[n]];
    t[n_] := Table[r[n][[k[n] + 1 - i]]/r[n][[k[1] + i - 1]], {i, 1, k[n]}];
    s = Table[Plus @@ t[n], {n, 1, z}];
    a[n_] := If[IntegerQ[s[[n]]], 1, 0];
    u = Table[a[n], {n, 1, z}]; (*A229996*)
    d = Denominator[s]; row[n_] := Flatten[Position[d, n]] (*A305995 array*)
    rr[n_] := row[n]/n;
    TableForm[Table[rr[n], {n, 1, 100}]] (* A305996 array *)
    r1[n_, k_] := rr[n][[k]];
    Flatten[Table[r1[n - k + 1, k], {n, 5}, {k, n, 1, -1}]]  (* A305996 sequence *)

A306013 Let P(m) be the product of unitary divisors of m; then a(n) is the position of P(n) when all the numbers P(m) are arranged in increasing order.

Original entry on oeis.org

1, 2, 3, 4, 5, 7, 8, 9, 11, 13, 16, 17, 19, 23, 25, 27, 29, 31, 32, 36, 37, 41, 43, 47, 49, 53, 59, 61, 64, 67, 71, 73, 79, 81, 83, 89, 97, 100, 144, 196, 225, 324, 400, 441, 484, 576, 676, 784, 1089, 1156, 1225, 1296, 1444, 1521, 1600, 1936, 2025, 2116
Offset: 1

Views

Author

Clark Kimberling, Jun 24 2018

Keywords

Comments

P(m) = A061537(m).

Crossrefs

Programs

  • Mathematica
    z = 100; r[n_] := Select[Divisors[n], GCD[#, n/#] == 1 &];
    k[n_] := Length[r[n]];
    Table[r[n], {n, 1, z}]
    a[n_] := Apply[Times, r[n]]
    u = Table[a[n], {n, 1, z}]
    Sort[u]
Showing 1-10 of 10 results.