cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 113 results. Next

A229994 For every positive integer m, let u(m) = (d(1),d(2),...,d(k)) be the unitary divisors of m in increasing order. Let Q be the concatenation of the vectors (d(k)/d(1), d(k-1)/d(2), ..., d(1)/d(k)), so that every positive rational number appears in Q exactly once. The numerators form A229994; the denominators, A077610.

Original entry on oeis.org

1, 2, 1, 3, 1, 4, 1, 5, 1, 6, 3, 2, 1, 7, 1, 8, 1, 9, 1, 10, 5, 2, 1, 11, 1, 12, 4, 3, 1, 13, 1, 14, 7, 2, 1, 15, 5, 3, 1, 16, 1, 17, 1, 18, 9, 2, 1, 19, 1, 20, 5, 4, 1, 21, 7, 3, 1, 22, 11, 2, 1, 23, 1, 24, 8, 3, 1, 25, 1, 26, 13, 2, 1, 27, 1, 28, 7, 4, 1
Offset: 1

Views

Author

Clark Kimberling, Oct 31 2013

Keywords

Comments

The number of terms in S(m) is A034444(m); the denominators are given by A077610.

Examples

			The first fifteen positive rationals:  1, 2, 1/2, 3, 1/3, 4, 1/4, 5, 1/5, 6, 3/2, 2/3, 1/6, 7, 1/7.
		

Crossrefs

Programs

  • Mathematica
    z = 40; r[n_] := Select[Divisors[n], GCD[#, n/#] == 1 &]; k[n_] := Length[r[n]]; t[n_] := Table[r[n][[k[n] + 1 - i]]/r[n][[k[1] + i - 1]], {i, 1, k[n]}]; u[1] = t[1]; u[n_] := Join[u[n - 1], t[n]];
    Numerator[u[z]]   (* A229994 *)
    Denominator[u[z]] (* A077610 *)

Extensions

Definition corrected by Clark Kimberling, Jun 16 2018

A005117 Squarefree numbers: numbers that are not divisible by a square greater than 1.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 10, 11, 13, 14, 15, 17, 19, 21, 22, 23, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 46, 47, 51, 53, 55, 57, 58, 59, 61, 62, 65, 66, 67, 69, 70, 71, 73, 74, 77, 78, 79, 82, 83, 85, 86, 87, 89, 91, 93, 94, 95, 97, 101, 102, 103, 105, 106, 107, 109, 110, 111, 113
Offset: 1

Views

Author

Keywords

Comments

1 together with the numbers that are products of distinct primes.
Also smallest sequence with the property that a(m)*a(k) is never a square for k != m. - Ulrich Schimke (ulrschimke(AT)aol.com), Dec 12 2001
Numbers k such that there is only one Abelian group with k elements, the cyclic group of order k (the numbers such that A000688(k) = 1). - Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 25 2001
Numbers k such that A007913(k) > phi(k). - Benoit Cloitre, Apr 10 2002
a(n) is the smallest m with exactly n squarefree numbers <= m. - Amarnath Murthy, May 21 2002
k is squarefree <=> k divides prime(k)# where prime(k)# = product of first k prime numbers. - Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Mar 30 2004
Numbers k such that omega(k) = Omega(k) = A072047(k). - Lekraj Beedassy, Jul 11 2006
The LCM of any finite subset is in this sequence. - Lekraj Beedassy, Jul 11 2006
This sequence and the Beatty Pi^2/6 sequence (A059535) are "incestuous": the first 20000 terms are bounded within (-9, 14). - Ed Pegg Jr, Jul 22 2008
Let us introduce a function D(n) = sigma_0(n)/2^(alpha(1) + ... + alpha(r)), sigma_0(n) number of divisors of n (A000005), prime factorization of n = p(1)^alpha(1) * ... * p(r)^alpha(r), alpha(1) + ... + alpha(r) is sequence (A001222). Function D(n) splits the set of positive integers into subsets, according to the value of D(n). Squarefree numbers (A005117) has D(n)=1, other numbers are "deviated" from the squarefree ideal and have 0 < D(n) < 1. For D(n)=1/2 we have A048109, for D(n)=3/4 we have A060687. - Ctibor O. Zizka, Sep 21 2008
Numbers k such that gcd(k,k')=1 where k' is the arithmetic derivative (A003415) of k. - Giorgio Balzarotti, Apr 23 2011
Numbers k such that A007913(k) = core(k) = k. - Franz Vrabec, Aug 27 2011
Numbers k such that sqrt(k) cannot be simplified. - Sean Loughran, Sep 04 2011
Indices m where A057918(m)=0, i.e., positive integers m for which there are no integers k in {1,2,...,m-1} such that k*m is a square. - John W. Layman, Sep 08 2011
It appears that these are numbers j such that Product_{k=1..j} (prime(k) mod j) = 0 (see Maple code). - Gary Detlefs, Dec 07 2011. - This is the same claim as Mohammed Bouayoun's Mar 30 2004 comment above. To see why it holds: Primorial numbers, A002110, a subsequence of this sequence, are never divisible by any nonsquarefree number, A013929, and on the other hand, the index of the greatest prime dividing any n is less than n. Cf. A243291. - Antti Karttunen, Jun 03 2014
Conjecture: For each n=2,3,... there are infinitely many integers b > a(n) such that Sum_{k=1..n} a(k)*b^(k-1) is prime, and the smallest such an integer b does not exceed (n+3)*(n+4). - Zhi-Wei Sun, Mar 26 2013
The probability that a random natural number belongs to the sequence is 6/Pi^2, A059956 (see Cesàro reference). - Giorgio Balzarotti, Nov 21 2013
Booker, Hiary, & Keating give a subexponential algorithm for testing membership in this sequence without factoring. - Charles R Greathouse IV, Jan 29 2014
Because in the factorizations into prime numbers these a(n) (n >= 2) have exponents which are either 0 or 1 one could call the a(n) 'numbers with a fermionic prime number decomposition'. The levels are the prime numbers prime(j), j >= 1, and the occupation numbers (exponents) e(j) are 0 or 1 (like in Pauli's exclusion principle). A 'fermionic state' is then denoted by a sequence with entries 0 or 1, where, except for the zero sequence, trailing zeros are omitted. The zero sequence stands for a(1) = 1. For example a(5) = 6 = 2^1*3^1 is denoted by the 'fermionic state' [1, 1], a(7) = 10 by [1, 0, 1]. Compare with 'fermionic partitions' counted in A000009. - Wolfdieter Lang, May 14 2014
From Vladimir Shevelev, Nov 20 2014: (Start)
The following is an Eratosthenes-type sieve for squarefree numbers. For integers > 1:
1) Remove even numbers, except for 2; the minimal non-removed number is 3.
2) Replace multiples of 3 removed in step 1, and remove multiples of 3 except for 3 itself; the minimal non-removed number is 5.
3) Replace multiples of 5 removed as a result of steps 1 and 2, and remove multiples of 5 except for 5 itself; the minimal non-removed number is 6.
4) Replace multiples of 6 removed as a result of steps 1, 2 and 3 and remove multiples of 6 except for 6 itself; the minimal non-removed number is 7.
5) Repeat using the last minimal non-removed number to sieve from the recovered multiples of previous steps.
Proof. We use induction. Suppose that as a result of the algorithm, we have found all squarefree numbers less than n and no other numbers. If n is squarefree, then the number of its proper divisors d > 1 is even (it is 2^k - 2, where k is the number of its prime divisors), and, by the algorithm, it remains in the sequence. Otherwise, n is removed, since the number of its squarefree divisors > 1 is odd (it is 2^k-1).
(End)
The lexicographically least sequence of integers > 1 such that each entry has an even number of proper divisors occurring in the sequence (that's the sieve restated). - Glen Whitney, Aug 30 2015
0 is nonsquarefree because it is divisible by any square. - Jon Perry, Nov 22 2014, edited by M. F. Hasler, Aug 13 2015
The Heinz numbers of partitions with distinct parts. We define the Heinz number of a partition p = [p_1, p_2, ..., p_r] as Product_{j=1..r} prime(j) (concept used by Alois P. Heinz in A215366 as an "encoding" of a partition). For example, for the partition [1, 1, 2, 4, 10] the Heinz number is 2*2*3*7*29 = 2436. The number 30 (= 2*3*5) is in the sequence because it is the Heinz number of the partition [1,2,3]. - Emeric Deutsch, May 21 2015
It is possible for 2 consecutive terms to be even; for example a(258)=422 and a(259)=426. - Thomas Ordowski, Jul 21 2015. [These form a subsequence of A077395 since their product is divisible by 4. - M. F. Hasler, Aug 13 2015]
There are never more than 3 consecutive terms. Runs of 3 terms start at 1, 5, 13, 21, 29, 33, ... (A007675). - Ivan Neretin, Nov 07 2015
a(n) = product of row n in A265668. - Reinhard Zumkeller, Dec 13 2015
Numbers without excess, i.e., numbers k such that A001221(k) = A001222(k). - Juri-Stepan Gerasimov, Sep 05 2016
Numbers k such that b^(phi(k)+1) == b (mod k) for every integer b. - Thomas Ordowski, Oct 09 2016
Boreico shows that the set of square roots of the terms of this sequence is linearly independent over the rationals. - Jason Kimberley, Nov 25 2016 (reference found by Michael Coons).
Numbers k such that A008836(k) = A008683(k). - Enrique Pérez Herrero, Apr 04 2018
The prime zeta function P(s) "has singular points along the real axis for s=1/k where k runs through all positive integers without a square factor". See Wolfram link. - Maleval Francis, Jun 23 2018
Numbers k such that A007947(k) = k. - Kyle Wyonch, Jan 15 2021
The Schnirelmann density of the squarefree numbers is 53/88 (Rogers, 1964). - Amiram Eldar, Mar 12 2021
Comment from Isaac Saffold, Dec 21 2021: (Start)
Numbers k such that all groups of order k have a trivial Frattini subgroup [Dummit and Foote].
Let the group G have order n. If n is squarefree and n > 1, then G is solvable, and thus by Hall's Theorem contains a subgroup H_p of index p for all p | n. Each H_p is maximal in G by order considerations, and the intersection of all the H_p's is trivial. Thus G's Frattini subgroup Phi(G), being the intersection of G's maximal subgroups, must be trivial. If n is not squarefree, the cyclic group of order n has a nontrivial Frattini subgroup. (End)
Numbers for which the squarefree divisors (A206778) and the unitary divisors (A077610) are the same; moreover they are also the set of divisors (A027750). - Bernard Schott, Nov 04 2022
0 = A008683(a(n)) - A008836(a(n)) = A001615(a(n)) - A000203(a(n)). - Torlach Rush, Feb 08 2023
From Robert D. Rosales, May 20 2024: (Start)
Numbers n such that mu(n) != 0, where mu(n) is the Möbius function (A008683).
Solutions to the equation Sum_{d|n} mu(d)*sigma(d) = mu(n)*n, where sigma(n) is the sum of divisors function (A000203). (End)
a(n) is the smallest root of x = 1 + Sum_{k=1..n-1} floor(sqrt(x/a(k))) greater than a(n-1). - Yifan Xie, Jul 10 2024
Number k such that A001414(k) = A008472(k). - Torlach Rush, Apr 14 2025
To elaborate on the formula from Greathouse (2018), the maximum of a(n) - floor(n*Pi^2/6 + sqrt(n)/17) is 10 at indices n = 48715, 48716, 48721, and 48760. The maximum is 11, at the same indices, if floor is taken individually for the two addends and the square root. If the value is rounded instead, the maximum is 9 at 10 indices between 48714 and 48765. - M. F. Hasler, Aug 08 2025

References

  • Jean-Marie De Koninck, Ces nombres qui nous fascinent, Entry 165, p. 53, Ellipses, Paris, 2008.
  • David S. Dummit and Richard M. Foote, Abstract algebra. Vol. 1999. Englewood Cliffs, NJ: David S.Prentice Hall, 1991.
  • Ivan M. Niven and Herbert S. Zuckerman, An Introduction to the Theory of Numbers. 2nd ed., Wiley, NY, 1966, p. 251.
  • Michael Pohst and Hans J. Zassenhaus, Algorithmic Algebraic Number Theory, Cambridge Univ. Press, page 432.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Complement of A013929. Subsequence of A072774 and A209061.
Characteristic function: A008966 (mu(n)^2, where mu = A008683).
Subsequences: A000040, A002110, A235488.
Subsequences: numbers j such that j*a(k) is squarefree where k > 1: A056911 (k = 2), A261034 (k = 3), A274546 (k = 5), A276378 (k = 6).

Programs

  • Haskell
    a005117 n = a005117_list !! (n-1)
    a005117_list = filter ((== 1) . a008966) [1..]
    -- Reinhard Zumkeller, Aug 15 2011, May 10 2011
    
  • Magma
    [ n : n in [1..1000] | IsSquarefree(n) ];
    
  • Maple
    with(numtheory); a := [ ]; for n from 1 to 200 do if issqrfree(n) then a := [ op(a), n ]; fi; od:
    t:= n-> product(ithprime(k),k=1..n): for n from 1 to 113 do if(t(n) mod n = 0) then print(n) fi od; # Gary Detlefs, Dec 07 2011
    A005117 := proc(n) option remember; if n = 1 then 1; else for a from procname(n-1)+1 do if numtheory[issqrfree](a) then return a; end if; end do: end if; end proc:  # R. J. Mathar, Jan 09 2013
  • Mathematica
    Select[ Range[ 113], SquareFreeQ] (* Robert G. Wilson v, Jan 31 2005 *)
    Select[Range[150], Max[Last /@ FactorInteger[ # ]] < 2 &] (* Joseph Biberstine (jrbibers(AT)indiana.edu), Dec 26 2006 *)
    NextSquareFree[n_, k_: 1] := Block[{c = 0, sgn = Sign[k]}, sf = n + sgn; While[c < Abs[k], While[ ! SquareFreeQ@ sf, If[sgn < 0, sf--, sf++]]; If[ sgn < 0, sf--, sf++]; c++]; sf + If[ sgn < 0, 1, -1]]; NestList[ NextSquareFree, 1, 70] (* Robert G. Wilson v, Apr 18 2014 *)
    Select[Range[250], MoebiusMu[#] != 0 &] (* Robert D. Rosales, May 20 2024 *)
  • PARI
    bnd = 1000; L = vector(bnd); j = 1; for (i=1,bnd, if(issquarefree(i),L[j]=i; j=j+1)); L
    
  • PARI
    {a(n)= local(m,c); if(n<=1,n==1, c=1; m=1; while( cMichael Somos, Apr 29 2005 */
    
  • PARI
    list(n)=my(v=vectorsmall(n,i,1),u,j); forprime(p=2,sqrtint(n), forstep(i=p^2, n, p^2, v[i]=0)); u=vector(sum(i=1,n,v[i])); for(i=1,n,if(v[i],u[j++]=i)); u \\ Charles R Greathouse IV, Jun 08 2012
    
  • PARI
    for(n=1, 113, if(core(n)==n, print1(n, ", "))); \\ Arkadiusz Wesolowski, Aug 02 2016
    
  • PARI
    S(n) = my(s); forsquarefree(k=1,sqrtint(n),s+=n\k[1]^2*moebius(k)); s;
    a(n) = my(min=1, max=231, k=0, sc=0); if(n >= 144, min=floor(zeta(2)*n - 5*sqrt(n)); max=ceil(zeta(2)*n + 5*sqrt(n))); while(min <= max, k=(min+max)\2; sc=S(k); if(abs(sc-n) <= sqrtint(n), break); if(sc > n, max=k-1, if(sc < n, min=k+1, break))); while(!issquarefree(k), k-=1); while(sc != n, my(j=1); if(sc > n, j = -1); k += j; sc += j; while(!issquarefree(k), k += j)); k; \\ Daniel Suteu, Jul 07 2022
    
  • PARI
    first(n)=my(v=vector(n),i); forsquarefree(k=1,if(n<268293,(33*n+30)\20,(n*Pi^2/6+0.058377*sqrt(n))\1), if(i++>n, return(v)); v[i]=k[1]); v \\ Charles R Greathouse IV, Jan 10 2023
    
  • PARI
    A5117=[1..3]; A005117(n)={if(n>#A5117, my(N=#A5117); A5117=Vec(A5117, max(n+999, N*5\4)); iferr(forsquarefree(k=A5117[N]+1, #A5117*Pi^2\6+sqrtint(#A5117)\17+11, A5117[N++]=k[1]),E,)); A5117[n]} \\ M. F. Hasler, Aug 08 2025
    
  • Python
    from sympy.ntheory.factor_ import core
    def ok(n): return core(n, 2) == n
    print(list(filter(ok, range(1, 114)))) # Michael S. Branicky, Jul 31 2021
    
  • Python
    from itertools import count, islice
    from sympy import factorint
    def A005117_gen(startvalue=1): # generator of terms >= startvalue
        return filter(lambda n:all(x == 1 for x in factorint(n).values()),count(max(startvalue,1)))
    A005117_list = list(islice(A005117_gen(),20)) # Chai Wah Wu, May 09 2022
    
  • Python
    from math import isqrt
    from sympy import mobius
    def A005117(n):
        def f(x): return n+x-sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return m # Chai Wah Wu, Jul 22 2024

Formula

Limit_{n->oo} a(n)/n = Pi^2/6 (see A013661). - Benoit Cloitre, May 23 2002
Equals A039956 UNION A056911. - R. J. Mathar, May 16 2008
A122840(a(n)) <= 1; A010888(a(n)) < 9. - Reinhard Zumkeller, Mar 30 2010
a(n) = A055229(A062838(n)) and a(n) > A055229(m) for m < A062838(n). - Reinhard Zumkeller, Apr 09 2010
A008477(a(n)) = 1. - Reinhard Zumkeller, Feb 17 2012
A055653(a(n)) = a(n); A055654(a(n)) = 0. - Reinhard Zumkeller, Mar 11 2012
A008966(a(n)) = 1. - Reinhard Zumkeller, May 26 2012
Sum_{n>=1} 1/a(n)^s = zeta(s)/zeta(2*s). - Enrique Pérez Herrero, Jul 07 2012
A056170(a(n)) = 0. - Reinhard Zumkeller, Dec 29 2012
A013928(a(n)+1) = n. - Antti Karttunen, Jun 03 2014
A046660(a(n)) = 0. - Reinhard Zumkeller, Nov 29 2015
Equals {1} UNION A000040 UNION A006881 UNION A007304 UNION A046386 UNION A046387 UNION A067885 UNION A123321 UNION A123322 UNION A115343 ... - R. J. Mathar, Nov 05 2016
|a(n) - n*Pi^2/6| < 0.058377*sqrt(n) for n >= 268293; this result can be derived from Cohen, Dress, & El Marraki, see links. - Charles R Greathouse IV, Jan 18 2018
From Amiram Eldar, Jul 07 2021: (Start)
Sum_{n>=1} (-1)^(a(n)+1)/a(n)^2 = 9/Pi^2.
Sum_{k=1..n} 1/a(k) ~ (6/Pi^2) * log(n).
Sum_{k=1..n} (-1)^(a(k)+1)/a(k) ~ (2/Pi^2) * log(n).
(all from Scott, 2006) (End)

A034444 a(n) is the number of unitary divisors of n (d such that d divides n, gcd(d, n/d) = 1).

Original entry on oeis.org

1, 2, 2, 2, 2, 4, 2, 2, 2, 4, 2, 4, 2, 4, 4, 2, 2, 4, 2, 4, 4, 4, 2, 4, 2, 4, 2, 4, 2, 8, 2, 2, 4, 4, 4, 4, 2, 4, 4, 4, 2, 8, 2, 4, 4, 4, 2, 4, 2, 4, 4, 4, 2, 4, 4, 4, 4, 4, 2, 8, 2, 4, 4, 2, 4, 8, 2, 4, 4, 8, 2, 4, 2, 4, 4, 4, 4, 8, 2, 4, 2, 4, 2, 8, 4, 4, 4, 4, 2, 8, 4, 4, 4, 4, 4, 4, 2, 4, 4, 4, 2, 8, 2, 4, 8
Offset: 1

Views

Author

Keywords

Comments

If n = Product p_i^a_i, d = Product p_i^c_i is a unitary divisor of n if each c_i is 0 or a_i.
Also the number of squarefree divisors of n. - Labos Elemer
Also number of divisors of the squarefree kernel of n: a(n) = A000005(A007947(n)). - Reinhard Zumkeller, Jul 19 2002
Also shadow transform of pronic numbers A002378.
For n >= 1 define an n X n (0,1) matrix A by A[i,j] = 1 if lcm(i,j) = n, A[i,j] = 0 if lcm(i,j) <> n for 1 <= i,j <= n. a(n) is the rank of A. - Yuval Dekel (dekelyuval(AT)hotmail.com), Aug 11 2003
a(n) is also the number of solutions to x^2 - x == 0 (mod n). - Yuval Dekel (dekelyuval(AT)hotmail.com), Sep 21 2003
a(n) is the number of squarefree divisors of n, but in general the set of unitary divisors of n is not the set of squarefree divisors (compare the rows of A077610 and A206778). - Jaroslav Krizek, May 04 2009
Row lengths of the triangles in A077610 and in A206778. - Reinhard Zumkeller, Feb 12 2012
a(n) is also the number of distinct residues of k^phi(n) (mod n), k=0..n-1. - Michel Lagneau, Nov 15 2012
a(n) is the number of irreducible fractions y/x that satisfy x*y=n (and gcd(x,y)=1), x and y positive integers. - Luc Rousseau, Jul 09 2017
a(n) is the number of (x,y) lattice points satisfying both x*y=n and (x,y) is visible from (0,0), x and y positive integers. - Luc Rousseau, Jul 10 2017
Conjecture: For any nonnegative integer k and positive integer n, the sum of the k-th powers of the unitary divisors of n is divisible by the sum of the k-th powers of the odd unitary divisors of n (note that this sequence lists the sum of the 0th powers of the unitary divisors of n). - Ivan N. Ianakiev, Feb 18 2018
a(n) is the number of one-digit numbers, k, when written in base n such that k and k^2 end in the same digit. - Matthew Scroggs, Jun 01 2018
Dirichlet convolution of A271102 and A000005. - Vaclav Kotesovec, Apr 08 2019
Conjecture: Let b(i; n), n > 0, be multiplicative sequences for some fixed integer i >= 0 with b(i; p^e) = (Sum_{k=1..i+1} A164652(i, k) * e^(k-1)) * (i+2) / (i!) for prime p and e > 0. Then we have Dirichlet generating functions: Sum_{n > 0} b(i; n) / n^s = (zeta(s))^(i+2) / zeta((i+2) * s). Examples for i=0 this sequence, for i=1 A226602, and for i=2 A286779. - Werner Schulte, Feb 17 2022
The smallest integer with 2^m unitary divisors, or equivalently, the smallest integer with 2^m squarefree divisors, is A002110(m). - Bernard Schott, Oct 04 2022

Examples

			a(12) = 4 because the four unitary divisors of 12 are 1, 3, 4, 12, and also because the four squarefree divisors of 12 are 1, 2, 3, 6.
		

References

  • R. K. Guy, Unsolved Problems in Number Theory, Sect. B3.

Crossrefs

Sum of the k-th powers of the squarefree divisors of n for k=0..10: this sequence (k=0), A048250 (k=1), A351265 (k=2), A351266 (k=3), A351267 (k=4), A351268 (k=5), A351269 (k=6), A351270 (k=7), A351271 (k=8), A351272 (k=9), A351273 (k=10).
Sequences of the form n^k * Product_ {p|n, p prime} (1 + 1/p^k) for k=0..10: this sequence (k=0), A001615 (k=1), A065958 (k=2), A065959 (k=3), A065960 (k=4), A351300 (k=5), A351301 (k=6), A351302 (k=7), A351303 (k=8), A351304 (k=9), this sequence (k=10).
Cf. A020821 (Dgf at s=2), A177057 (Dgf at s=4).

Programs

  • Haskell
    a034444 = length . a077610_row  -- Reinhard Zumkeller, Feb 12 2012
    
  • Magma
    [#[d:d in Divisors(n)|Gcd(d,n div d) eq 1]:n in [1..110]]; // Marius A. Burtea, Jan 11 2020
    
  • Magma
    [&+[Abs(MoebiusMu(d)):d in Divisors(n)]:n in [1..110]]; // Marius A. Burtea, Jan 11 2020
  • Maple
    with(numtheory): for n from 1 to 200 do printf(`%d,`,2^nops(ifactors(n)[2])) od:
    with(numtheory);
    # returns the number of unitary divisors of n and a list of them
    f:=proc(n)
    local ct,i,t1,ans;
    ct:=0; ans:=[];
    t1:=divisors(n);
    for i from 1 to nops(t1) do
    d:=t1[i];
    if igcd(d,n/d)=1 then ct:=ct+1; ans:=[op(ans),d]; fi;
    od:
    RETURN([ct,ans]);
    end;
    # N. J. A. Sloane, May 01 2013
    # alternative Maple program:
    a:= n-> 2^nops(ifactors(n)[2]):
    seq(a(n), n=1..105);  # Alois P. Heinz, Jan 23 2024
    a := n -> 2^NumberTheory:-NumberOfPrimeFactors(n, distinct):  # Peter Luschny, May 13 2025
  • Mathematica
    a[n_] := Count[Divisors[n], d_ /; GCD[d, n/d] == 1]; a /@ Range[105] (* Jean-François Alcover, Apr 05 2011 *)
    Table[2^PrimeNu[n],{n,110}] (* Harvey P. Dale, Jul 14 2011 *)
  • PARI
    a(n)=1<Charles R Greathouse IV, Feb 11 2011
    
  • PARI
    for(n=1, 100, print1(direuler(p=2, n, (1+X)/(1-X))[n], ", ")) \\ Vaclav Kotesovec, Sep 26 2020
    
  • Python
    from sympy import divisors, gcd
    def a(n):
        return sum(1 for d in divisors(n) if gcd(d, n//d)==1)
    # Indranil Ghosh, Apr 16 2017
    
  • Python
    from sympy import primefactors
    def a(n): return 2**len(primefactors(n))
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Apr 16 2017
    
  • Scheme
    (define (A034444 n) (if (= 1 n) n (* 2 (A034444 (A028234 n))))) ;; Antti Karttunen, May 29 2017
    

Formula

a(n) = Sum_{d|n} abs(mu(n)) = 2^(number of different primes dividing n) = 2^A001221(n), with mu(n) = A008683(n). [Added Möbius formula. - Wolfdieter Lang, Jan 11 2020]
a(n) = Product_{ primes p|n } (1 + Legendre(1, p)).
Multiplicative with a(p^k)=2 for p prime and k>0. - Henry Bottomley, Oct 25 2001
a(n) = Sum_{d|n} tau(d^2)*mu(n/d), Dirichlet convolution of A048691 and A008683. - Benoit Cloitre, Oct 03 2002
Dirichlet generating function: zeta(s)^2/zeta(2s). - Franklin T. Adams-Watters, Sep 11 2005
Inverse Mobius transform of A008966. - Franklin T. Adams-Watters, Sep 11 2005
Asymptotically [Finch] the cumulative sum of a(n) = Sum_{n=1..N} a(n) ~ (6/(Pi^2))*N*log(N) + (6/(Pi^2))*(2*gamma - 1 - (12/(Pi^2))*zeta'(2))*N + O(sqrt(N)). - Jonathan Vos Post, May 08 2005 [typo corrected by Vaclav Kotesovec, Sep 13 2018]
a(n) = Sum_{d|n} floor(rad(d)/d), where rad is A007947 and floor(rad(n)/n) = A008966(n). - Enrique Pérez Herrero, Nov 13 2009
a(n) = A000005(n) - A048105(n); number of nonzero terms in row n of table A225817. - Reinhard Zumkeller, Jul 30 2013
G.f.: Sum_{n>0} A008966(n)*x^n/(1-x^n). - Mircea Merca, Feb 25 2014
a(n) = Sum_{d|n} lambda(d)*mu(d), where lambda is A008836. - Enrique Pérez Herrero, Apr 27 2014
a(n) = A277561(A156552(n)). - Antti Karttunen, May 29 2017
a(n) = A005361(n^2)/A005361(n). - Velin Yanev, Jul 26 2017
L.g.f.: -log(Product_{k>=1} (1 - mu(k)^2*x^k)^(1/k)) = Sum_{n>=1} a(n)*x^n/n. - Ilya Gutkovskiy, Jul 30 2018
a(n) = Sum_{d|n} A001615(d) * A023900(n/d). - Torlach Rush, Jan 20 2020
Sum_{d|n, gcd(d, n/d) = 1} a(d) * (-1)^omega(n/d) = 1. - Amiram Eldar, May 29 2020
a(n) = lim_{k->oo} A000005(n^(2*k))/A000005(n^k). - Velin Yanev and Amiram Eldar, Jan 10 2025

Extensions

More terms from James Sellers, Jun 20 2000

A034448 usigma(n) = sum of unitary divisors of n (divisors d such that gcd(d, n/d)=1); also called UnitarySigma(n).

Original entry on oeis.org

1, 3, 4, 5, 6, 12, 8, 9, 10, 18, 12, 20, 14, 24, 24, 17, 18, 30, 20, 30, 32, 36, 24, 36, 26, 42, 28, 40, 30, 72, 32, 33, 48, 54, 48, 50, 38, 60, 56, 54, 42, 96, 44, 60, 60, 72, 48, 68, 50, 78, 72, 70, 54, 84, 72, 72, 80, 90, 60, 120, 62, 96, 80, 65, 84, 144, 68, 90, 96, 144
Offset: 1

Views

Author

N. J. A. Sloane, Dec 11 1999

Keywords

Comments

Row sums of the triangle in A077610. - Reinhard Zumkeller, Feb 12 2002
Multiplicative with a(p^e) = p^e+1 for e>0. - Franklin T. Adams-Watters, Sep 11 2005

Examples

			Unitary divisors of 12 are 1, 3, 4, 12. Or, 12=3*2^2 hence usigma(12)=(3+1)*(2^2+1)=20.
		

References

  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 147.

Crossrefs

Programs

  • Haskell
    a034448 = sum . a077610_row  -- Reinhard Zumkeller, Feb 12 2012
    (Python 3.8+)
    from math import prod
    from sympy import factorint
    def A034448(n): return prod(p**e+1 for p, e in factorint(n).items()) # Chai Wah Wu, Jun 20 2021
  • Maple
    A034448 := proc(n) local ans, i:ans := 1: for i from 1 to nops(ifactors(n)[ 2 ]) do ans := ans*(1+ifactors(n)[ 2 ][ i ][ 1 ]^ifactors(n)[ 2 ] [ i ] [ 2 ]): od: RETURN(ans) end:
    a := proc(n) local i; numtheory[divisors](n); select(d -> igcd(d,n/d)=1, %); add(i,i=%) end; # Peter Luschny, May 03 2009
  • Mathematica
    usigma[n_] := Block[{d = Divisors[n]}, Plus @@ Select[d, GCD[ #, n/# ] == 1 &]]; Table[ usigma[n], {n, 71}] (* Robert G. Wilson v, Aug 28 2004 *)
    Table[DivisorSum[n, # &, CoprimeQ[#, n/#] &], {n, 70}] (* Michael De Vlieger, Mar 01 2017 *)
    usigma[n_] := If[n == 1, 1, Times @@ (1 + Power @@@ FactorInteger[n])]; Array[usigma, 100] (* faster since avoids generating divisors, Giovanni Resta, Apr 23 2017 *)
  • PARI
    A034448(n)=sumdiv(n,d,if(gcd(d,n/d)==1,d)) \\ Rick L. Shepherd
    
  • PARI
    A034448(n) = {my(f=factorint(n)); prod(k=1, #f[,2], f[k,1]^f[k,2]+1)} \\ Andrew Lelechenko, Apr 22 2014
    
  • PARI
    a(n)=sumdivmult(n,d,if(gcd(d,n/d)==1,d)) \\ Charles R Greathouse IV, Sep 09 2014
    

Formula

If n = Product p_i^e_i, usigma(n) = Product (p_i^e_i + 1). - Vladeta Jovovic, Apr 19 2001
Dirichlet generating function: zeta(s)*zeta(s-1)/zeta(2s-1). - Franklin T. Adams-Watters, Sep 11 2005
Conjecture: a(n) = sigma(n^2/rad(n))/sigma(n/rad(n)), where sigma = A000203 and rad = A007947. - Velin Yanev, Aug 20 2017
This conjecture is easily verified since all the functions involved are multiplicative and proving it for prime powers is straightforward. - Juan José Alba González, Mar 19 2021
From Amiram Eldar, May 29 2020: (Start)
Sum_{d|n, gcd(d, n/d) = 1} a(d) * (-1)^omega(n/d) = n.
a(n) <= sigma(n) = A000203(n), with equality if and only if n is squarefree (A005117). (End)
Sum_{k=1..n} a(k) ~ Pi^2 * n^2 / (12*zeta(3)). - Vaclav Kotesovec, May 20 2021
a(n) = uphi(n^2)/uphi(n) = A191414(n)/uphi(n), where uphi(n) = A047994(n). - Amiram Eldar, Sep 21 2024

Extensions

More terms from Erich Friedman

A004709 Cubefree numbers: numbers that are not divisible by any cube > 1.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 17, 18, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 82, 83, 84, 85
Offset: 1

Views

Author

Steven Finch, Jun 14 1998

Keywords

Comments

Numbers n such that no smaller number m satisfies: kronecker(n,k)=kronecker(m,k) for all k. - Michael Somos, Sep 22 2005
The asymptotic density of cubefree integers is the reciprocal of Apery's constant 1/zeta(3) = A088453. - Gerard P. Michon, May 06 2009
The Schnirelmann density of the cubefree numbers is 157/189 (Orr, 1969). - Amiram Eldar, Mar 12 2021
From Amiram Eldar, Feb 26 2024: (Start)
Numbers whose sets of unitary divisors (A077610) and bi-unitary divisors (A222266) coincide.
Number whose all divisors are (1+e)-divisors, or equivalently, numbers k such that A049599(k) = A000005(k). (End)

Crossrefs

Complement of A046099.
Cf. A005117 (squarefree), A067259 (cubefree but not squarefree), A046099 (cubeful).
Cf. A160112, A160113, A160114 & A160115: On the number of cubefree integers. - Gerard P. Michon, May 06 2009
Cf. A030078.

Programs

  • Haskell
    a004709 n = a004709_list !! (n-1)
    a004709_list = filter ((== 1) . a212793) [1..]
    -- Reinhard Zumkeller, May 27 2012
    
  • Maple
    isA004709 := proc(n)
        local p;
        for p in ifactors(n)[2] do
            if op(2,p) > 2 then
                return false;
            end if;
        end do:
        true ;
    end proc:
  • Mathematica
    Select[Range[6!], FreeQ[FactorInteger[#], {, k /; k > 2}] &] (* Jan Mangaldan, May 07 2014 *)
  • PARI
    {a(n)= local(m,c); if(n<2, n==1, c=1; m=1; while( cvecmax(factor(m)[,2]), c++)); m)} /* Michael Somos, Sep 22 2005 */
    
  • Python
    from sympy.ntheory.factor_ import core
    def ok(n): return core(n, 3) == n
    print(list(filter(ok, range(1, 86)))) # Michael S. Branicky, Aug 16 2021
    
  • Python
    from sympy import mobius, integer_nthroot
    def A004709(n):
        def f(x): return n+x-sum(mobius(k)*(x//k**3) for k in range(1, integer_nthroot(x,3)[0]+1))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        return m # Chai Wah Wu, Aug 05 2024

Formula

A066990(a(n)) = a(n). - Reinhard Zumkeller, Jun 25 2009
A212793(a(n)) = 1. - Reinhard Zumkeller, May 27 2012
A124010(a(n),k) <= 2 for all k = 1..A001221(a(n)). - Reinhard Zumkeller, Mar 04 2015
Sum_{n>=1} 1/a(n)^s = zeta(s)/zeta(3*s), for s > 1. - Amiram Eldar, Dec 27 2022

A138302 Exponentially 2^n-numbers: 1 together with positive integers k such that all exponents in prime factorization of k are powers of 2.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 25, 26, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 39, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 55, 57, 58, 59, 60, 61, 62, 63, 65, 66, 67, 68, 69, 70, 71, 73, 74, 75, 76, 77, 78, 79, 80, 81
Offset: 1

Views

Author

Vladimir Shevelev, May 07 2008

Keywords

Comments

Previous name: sequence consists of products of distinct relatively prime terms of A084400. - Vladimir Shevelev, Sep 24 2015
These numbers are also called "compact integers."
The density of this sequence exists and equals 0.872497...
There exist only seven compact factorials A000142(n) for n=1,2,3,6,7,10 and 11.
For a general definition of exponentially S-numbers, see comments in A209061. - Vladimir Shevelev, Sep 24 2015
The first 1000 digits of the density of the sequence were calculated by Juan Arias-de-Reyna in A271727. - Vladimir Shevelev, Apr 18 2016
A225546 maps the set of terms 1:1 onto A268375. - Peter Munn, Jan 26 2020
Numbers whose sets of unitary divisors (A077610) and infinitary divisors (A077609) coincide. - Amiram Eldar, Dec 23 2020

Examples

			60 = 2^(2^1)*3^(2^0)*5^(2^0).
		

Crossrefs

Programs

  • Maple
    isA000079 := proc(n)
        if n = 1 then
            true;
        else
            type(n,'even') and nops(numtheory[factorset](n))=1 ;
            simplify(%) ;
        end if;
    end proc:
    isA138302 := proc(n)
        local p;
        if n = 1 then
            return true;
        end if;
        for p in ifactors(n)[2] do
            if not isA000079(op(2,p)) then
                return false;
            end if;
        end do:
        true ;
    end proc:
    for n from 1 to 100 do
        if isA138302(n) then
            printf("%d,",n) ;
        end if;
    end do: # R. J. Mathar, Sep 27 2016
  • Mathematica
    lst={}; Do[p=Prime[n]; s=p^(1/3); f=Floor[s]; a=f^3; d=p-a; AppendTo[lst,d], {n,100}]; Union[lst] (* Vladimir Joseph Stephan Orlovsky, Mar 11 2009 *)
    selQ[n_] := AllTrue[FactorInteger[n][[All, 2]], IntegerQ[Log[2, #]]&];
    Select[Range[100], selQ] (* Jean-François Alcover, Oct 29 2018 *)
  • PARI
    is(n)=if(n<8, n>0, vecmin(apply(n->n>>valuation(n,2)==1, factor(n)[,2]))) \\ Charles R Greathouse IV, Dec 07 2012

Formula

Identities arising from the calculation of the density h of the sequence (cf. [Shevelev] and comment for a generalization in A209061):
h = Product_{prime p} Sum_{j in {0 and 2^k}}(p-1)/p^(j+1) = Product_{prime p} (1 + Sum_{j>=2} (u(j) - u(j-1))/p^j) = (1/zeta(2))* Product_{p}(1 + 1/(p+1))*Sum_{i>=1}p^(-(2^i-1)), where u(n) is the characteristic function of set {2^k, k>=0}. - Vladimir Shevelev, Sep 24 2015

Extensions

Incorrect comment removed by Charles R Greathouse IV, Dec 07 2012
Simpler name from Vladimir Shevelev, Sep 24 2015
Edited by N. J. A. Sloane, Nov 07 2015

A034460 a(n) = usigma(n) - n, where usigma(n) = sum of unitary divisors of n (A034448).

Original entry on oeis.org

0, 1, 1, 1, 1, 6, 1, 1, 1, 8, 1, 8, 1, 10, 9, 1, 1, 12, 1, 10, 11, 14, 1, 12, 1, 16, 1, 12, 1, 42, 1, 1, 15, 20, 13, 14, 1, 22, 17, 14, 1, 54, 1, 16, 15, 26, 1, 20, 1, 28, 21, 18, 1, 30, 17, 16, 23, 32, 1, 60, 1, 34, 17, 1, 19, 78, 1, 22, 27, 74, 1, 18, 1, 40, 29, 24, 19, 90, 1, 22, 1, 44
Offset: 1

Views

Author

Keywords

Examples

			Unitary divisors of 12 are 1, 3, 4, 12. a(12) = 1 + 3 + 4 = 8.
		

Crossrefs

Cf. A063936 (squares > 1).
Cf. A063919 (essentially the same sequence).

Programs

  • Haskell
    a034460 = sum . init . a077610_row  -- Reinhard Zumkeller, Aug 15 2012
    
  • Maple
    A034460 := proc(n)
        A034448(n)-n ;
    end proc:
    seq(A034460(n),n=1..40) ; # R. J. Mathar, Nov 10 2014
  • Mathematica
    usigma[n_] := Sum[ If[GCD[d, n/d] == 1, d, 0], {d, Divisors[n]}]; a[n_] := usigma[n] - n; Table[ a[n], {n, 1, 82}] (* Jean-François Alcover, May 15 2012 *)
    a[n_] := Times @@ (1 + Power @@@ FactorInteger[n]) - n; a[1] = 0; Array[a, 100] (* Amiram Eldar, Oct 03 2022 *)
  • PARI
    a(n)=sumdivmult(n, d, if(gcd(d, n/d)==1, d))-n \\ Charles R Greathouse IV, Aug 01 2016

Formula

a(n) = Sum_{k = 1..A034444(n)-1} A077610(n,k). - Reinhard Zumkeller, Aug 15 2012
Sum_{k=1..n} a(k) ~ c * n^2, where c = (zeta(2)/zeta(3) - 1)/2 = 0.1842163888... . - Amiram Eldar, Feb 22 2024

A063919 Sum of proper unitary divisors (or unitary aliquot parts) of n, including 1.

Original entry on oeis.org

1, 1, 1, 1, 1, 6, 1, 1, 1, 8, 1, 8, 1, 10, 9, 1, 1, 12, 1, 10, 11, 14, 1, 12, 1, 16, 1, 12, 1, 42, 1, 1, 15, 20, 13, 14, 1, 22, 17, 14, 1, 54, 1, 16, 15, 26, 1, 20, 1, 28, 21, 18, 1, 30, 17, 16, 23, 32, 1, 60, 1, 34, 17, 1, 19, 78, 1, 22, 27, 74, 1, 18, 1, 40, 29, 24, 19, 90, 1, 22, 1, 44
Offset: 1

Views

Author

Felice Russo, Aug 31 2001

Keywords

Comments

For definition of unitary divisor see A034448.

Examples

			a(10) = 8 because the unitary divisors of 10 are 1, 2, 5 and 10, with sum 18 and 18-10 = 8.
		

Crossrefs

The values of sequence are A034448(n)-n (for n > 1).

Programs

  • Haskell
    a063919 1 = 1
    a063919 n = sum $ init $ a077610_row n
    -- Reinhard Zumkeller, Mar 12 2012
  • Maple
    A063919 := proc(n)
        if n = 1 then
            1;
        else
            A034448(n)-n ;
        end if;
    end proc: # R. J. Mathar, May 14 2013
  • Mathematica
    a[n_] := Total[Select[Divisors[n], GCD[#, n/#] == 1&]]-n; a[1] = 1; Table[a[n], {n, 82}] (* Jean-François Alcover, Aug 31 2011 *)
  • PARI
    usigma(n) = sumdiv(n, d, if(gcd(d, n/d)==1, d))
    { for (n=1, 1000, if (n>1, a=usigma(n) - n, a=1); write("b063919.txt", n, " ", a) ) } \\ Harry J. Smith, Sep 02 2009
    
  • PARI
    A034460(n) = (sumdivmult(n, d, if(gcd(d, n/d)==1, d))-n); \\ From A034460
    A063919(n) = if(1==n,n,A034460(n)); \\ Antti Karttunen, Jun 12 2018
    

Formula

a(n) = A034460(n), n>1. - R. J. Mathar, Oct 02 2008
For n > 1: a(n) = sum (A077610(n,k): k = 1 .. A034444(n) - 1). - Reinhard Zumkeller, Mar 12 2012

A322791 Irregular triangle read by rows in which the n-th row lists the exponential divisors (or e-divisors) of n.

Original entry on oeis.org

1, 2, 3, 2, 4, 5, 6, 7, 2, 8, 3, 9, 10, 11, 6, 12, 13, 14, 15, 2, 4, 16, 17, 6, 18, 19, 10, 20, 21, 22, 23, 6, 24, 5, 25, 26, 3, 27, 14, 28, 29, 30, 31, 2, 32, 33, 34, 35, 6, 12, 18, 36, 37, 38, 39, 10, 40, 41, 42, 43, 22, 44, 15, 45, 46, 47, 6, 12, 48, 7, 49
Offset: 1

Views

Author

Amiram Eldar, Dec 26 2018

Keywords

Examples

			The table starts
  1
  2
  3
  2, 4
  5
  6
  7
  2, 8
  3, 9
  10
		

Crossrefs

Cf. A049419 (row lengths), A051377 (row sums).
Cf. A027750 (all divisors), A077609 (infinitary), A077610 (unitary), A222266 (bi-unitary).

Programs

  • Maple
    A322791 := proc(n)
        local expundivs ,d,isue,p,ai,bi;
        expudvs := {} ;
        for d in numtheory[divisors](n) do
            isue := true ;
            for p in numtheory[factorset](n) do
                ai := padic[ordp](n,p) ;
                bi := padic[ordp](d,p) ;
                if bi > 0 then
                    if modp(ai,bi) <>0 then
                        isue := false;
                    end if;
                else
                    isue := false ;
                end if;
            end do;
            if isue then
                expudvs := expudvs union {d} ;
            end if;
        end do:
        sort(expudvs) ;
    end proc:
    seq(op(A322791(n)),n=1..40) ; # R. J. Mathar, Mar 06 2023
  • Mathematica
    divQ[n_, m_] := (n > 0 && m>0 && Divisible[n, m]); expDivQ[n_, d_] := Module[ {f=FactorInteger[n]}, And@@MapThread[divQ, {f[[;; , 2]], IntegerExponent[ d, f[[;; , 1]]]} ]]; expDivs[1]={1}; expDivs[n_] := Module[ {d=Rest[Divisors[n]]}, Select[ d, expDivQ[n, #]&] ]; Table[expDivs[n], {n, 1, 50}] // Flatten
  • PARI
    isexpdiv(f, d) = { my(e); for (i=1, #f~, e = valuation(d, f[i, 1]); if(!e || (e && f[i, 2] % e), return(0))); 1; }
    row(n) = {my(d = divisors(n), f = factor(n), ediv = []); if(n == 1, return([1])); for(i=2, #d, if(isexpdiv(f, d[i]), ediv = concat(ediv, d[i]))); ediv; } \\ Amiram Eldar, Mar 27 2023

A055653 Sum of phi(d) [A000010] over all unitary divisors d of n (that is, gcd(d,n/d) = 1).

Original entry on oeis.org

1, 2, 3, 3, 5, 6, 7, 5, 7, 10, 11, 9, 13, 14, 15, 9, 17, 14, 19, 15, 21, 22, 23, 15, 21, 26, 19, 21, 29, 30, 31, 17, 33, 34, 35, 21, 37, 38, 39, 25, 41, 42, 43, 33, 35, 46, 47, 27, 43, 42, 51, 39, 53, 38, 55, 35, 57, 58, 59, 45, 61, 62, 49, 33, 65, 66, 67, 51, 69, 70, 71, 35, 73
Offset: 1

Views

Author

Labos Elemer, Jun 07 2000

Keywords

Comments

Phi-summation over d-s if runs over all divisors is n, so these values do not exceed n. Compare also other "Phi-summations" like A053570, A053571, or distinct primes dividing n, etc.
a(n) is also the number of solutions of x^(k+1)=x mod n for some k>=1. - Steven Finch, Apr 11 2006
An integer a is called regular (mod n) if there is an integer x such that a^2 x == a (mod n). Then a(n) is also the number of regular integers a (mod n) such that 1 <= a <= n. - Laszlo Toth, Sep 04 2008
Equals row sums of triangle A157361 and inverse Mobius transform of A114810. - Gary W. Adamson, Feb 28 2009
a(m) = m iff m is squarefree, a(A005117(n)) = A005117(n). - Reinhard Zumkeller, Mar 11 2012
Apostol & Tóth call this ϱ(n), i.e., varrho(n). - Charles R Greathouse IV, Apr 23 2013

Examples

			n=1260 has 36 divisors of which 16 are unitary ones: {1,4,5,7,9,20,28,35,36,45,63,140,180,252,315,1260}.
EulerPhi values of these divisors are: {1,2,4,6,6,8,12,24,12,24,36,48,48,72,144,288}.
The sum is 735, thus a(1260)=735.
Or, 1260=2^2*3^2*5*7, thus a(1260) = (1 + 2^2 - 2)*(1 + 3^2 - 3)*(1 + 5 - 5^0)*(1 + 7 - 7^0) = 735.
		

References

  • J. Morgado, Inteiros regulares módulo n, Gazeta de Matematica (Lisboa), 33 (1972), no. 125-128, 1-5. [From Laszlo Toth, Sep 04 2008]
  • J. Morgado, A property of the Euler phi-function concerning the integers which are regular modulo n, Portugal. Math., 33 (1974), 185-191.

Crossrefs

Programs

  • Haskell
    a055653 = sum . map a000010 . a077610_row
    -- Reinhard Zumkeller, Mar 11 2012
    
  • Maple
    A055653 := proc(n) local ans, i:ans := 1: for i from 1 to nops(ifactors(n)[ 2 ]) do ans := ans*(1+ifactors(n)[ 2 ][ i ] [ 1 ]^ifactors(n)[ 2 ] [ i ] [ 2 ]-ifactors(n)[ 2 ][ i ] [ 1 ]^(ifactors(n)[ 2 ] [ i ] [ 2 ]-1)): od: RETURN(ans) end:
  • Mathematica
    a[n_] := Total[EulerPhi[Select[Divisors[n], GCD[#, n/#] == 1 &]]]; Array[a, 73] (* Jean-François Alcover, May 03 2011 *)
    f[p_, e_] := p^e - p^(e-1) + 1; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n]; Array[a, 100] (* Amiram Eldar, Sep 10 2020 *)
  • PARI
    a(n) = sumdiv(n, d, if(gcd(n/d, d)==1, eulerphi(d))); \\ Charles R Greathouse IV, Feb 19 2013, corrected by Antti Karttunen, Sep 03 2018
    
  • PARI
    a(n)=my(f=factor(n));prod(i=1,#f[,1],f[i,1]^f[i,2]-f[i,1]^(f[i,2]-1)+1) \\ Charles R Greathouse IV, Feb 19 2013

Formula

If n = product p_i^e_i, a(n) = product (1+p_i^e_i-p_i^(e_i-1)). - Vladeta Jovovic, Apr 19 2001
Dirichlet g.f.: zeta(s)*zeta(s-1)*product_{primes p} (1+p^(-2s)-p^(1-2s)-p^(-s)). - R. J. Mathar, Oct 24 2011
Dirichlet convolution square of A318661(n)/A318662(n). - Antti Karttunen, Sep 03 2018
Sum_{k=1..n} a(k) ~ c * Pi^2 * n^2 / 12, where c = Product_{primes p} (1 - 1/p^2 - 1/p^3 + 1/p^4) = A330523 = 0.535896... - Vaclav Kotesovec, Dec 17 2019
Showing 1-10 of 113 results. Next