A230223 Primes p such that 3*p-4, 3*p-10, and 3*p-14 are all prime.
7, 11, 17, 19, 31, 37, 47, 59, 79, 107, 131, 151, 157, 229, 317, 367, 409, 431, 479, 499, 521, 541, 739, 787, 1031, 1181, 1307, 1381, 1487, 1601, 1697, 1747, 1951, 2551, 2749, 2767, 2917, 3251, 3391, 3449, 3581, 3931, 4217, 4349, 4447, 4567, 4639, 4721, 4909, 4967
Offset: 1
Keywords
Examples
a(1) = 7 since 3*7-4 = 17, 3*7-10 = 11 and 3*7-14 = 7 are prime.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, Conjectures involving primes and quadratic forms, preprint, arXiv:1211.1588.
Programs
-
Mathematica
RQ[n_]:=n>5&&PrimeQ[3n-4]&&PrimeQ[3n-10]&&PrimeQ[3n-14] m=0 Do[If[RQ[Prime[n]],m=m+1;Print[m," ",Prime[n]]],{n,1,1000}] Select[Prime[Range[700]],AllTrue[3#-{4,10,14},PrimeQ]&] (* Harvey P. Dale, Sep 29 2023 *)
-
PARI
is(p)=isprime(p) && isprime(3*p-4) && isprime(3*p-10) && isprime(3*p-14) \\ Charles R Greathouse IV, Oct 12 2013
Comments