cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A053737 Sum of digits of (n written in base 4).

Original entry on oeis.org

0, 1, 2, 3, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6, 4, 5, 6, 7, 2, 3, 4, 5, 3, 4, 5, 6, 4, 5, 6, 7, 5, 6, 7, 8, 3, 4, 5, 6, 4, 5, 6, 7, 5, 6, 7, 8, 6, 7, 8, 9, 1, 2, 3, 4, 2, 3, 4, 5, 3, 4, 5, 6, 4, 5, 6, 7, 2, 3, 4, 5, 3, 4, 5, 6, 4, 5, 6, 7, 5, 6, 7, 8, 3, 4, 5, 6, 4, 5, 6, 7, 5
Offset: 0

Views

Author

Henry Bottomley, Mar 28 2000

Keywords

Comments

Also the fixed point of the morphism 0->{0,1,2,3}, 1->{1,2,3,4}, 2->{2,3,4,5}, etc. - Robert G. Wilson v, Jul 27 2006

Examples

			a(20) = 1+1+0 = 2 because 20 is written as 110 base 4.
From _Omar E. Pol_, Feb 21 2010: (Start)
This can be written as a triangle (cf. A000120):
  0,
  1,2,3,
  1,2,3,4,2,3,4,5,3,4,5,6,
  1,2,3,4,2,3,4,5,3,4,5,6,4,5,6,7,2,3,4,5,3,4,5,6,4,5,6,7,5,6,7,8,3,4,5,6,4,5,6,7,5,6,7,8,6,7,8,9,
  1,2,3,4,2,3,4,5,3,4,5,6,4,5,6,7,2,3,4,5,3,4,5,6,4,5,6,7,5,6,7,8,3,4,5,6,4,...
where the rows converge to A173524.
(End)
		

Crossrefs

Cf. A173524. - Omar E. Pol, Feb 21 2010
Sum of digits of n written in bases 2-16: A000120, A053735, this sequence, A053824, A053827, A053828, A053829, A053830, A007953, A053831, A053832, A053833, A053834, A053835, A053836.
Related base-4 sequences: A053737, A230631, A230632, A010064, A230633, A230634, A230635, A230636, A230637, A230638, A010065 (trajectory of 1).

Programs

  • Haskell
    a053737 n = if n == 0 then 0 else a053737 m + r where (m, r) = divMod n 4
    -- Reinhard Zumkeller, Mar 19 2015
    
  • MATLAB
    for u=0:104; sol(u+1)=sum(dec2base(u,4)-'0');end
    sol % Marius A. Burtea, Jan 17 2019
  • Magma
    [&+Intseq(n,4):n in [0..104]]; // Marius A. Burtea, Jan 17 2019
    
  • Maple
    A053737 := proc(n)
        add(d,d=convert(n,base,4)) ;
    end proc: # R. J. Mathar, Oct 31 2012
  • Mathematica
    Table[Plus @@ IntegerDigits[n, 4], {n, 0, 100}] (* or *)
    Nest[ Flatten[ #1 /. a_Integer -> {a, a+1, a+2, a+3}] &, {0}, 4] (* Robert G. Wilson v, Jul 27 2006 *)
    DigitSum[Range[0, 100], 4] (* Paolo Xausa, Aug 01 2024 *)
  • PARI
    a(n)=if(n<1,0,if(n%4,a(n-1)+1,a(n/4)))
    
  • PARI
    a(n) = sumdigits(n, 4); \\ Michel Marcus, Aug 24 2019
    

Formula

From Benoit Cloitre, Dec 19 2002: (Start)
a(0) = 0, a(4n+i) = a(n)+i for 0 <= i <= 3.
a(n) = n - 3*Sum_{k>0} floor(n/4^k) = n - 3*A054893(n). (End)
G.f.: (Sum_{k>=0} (x^(4^k) + 2*x^(2*4^k) + 3*x^(3*4^k))/(1 + x^(4^k) + x^(2*4^k) + x^(3*4^k)))/(1-x). - Franklin T. Adams-Watters, Nov 03 2005
a(n) = A138530(n,4) for n > 3. - Reinhard Zumkeller, Mar 26 2008
a(n) = Sum_{k>=0} A030386(n,k). - Philippe Deléham, Oct 21 2011
a(n) = A007953(A007090(n)). - Reinhard Zumkeller, Mar 19 2015
a(0) = 0; a(n) = a(n - 4^floor(log_4(n))) + 1. - Ilya Gutkovskiy, Aug 23 2019
Sum_{n>=1} a(n)/(n*(n+1)) = 4*log(4)/3 (Shallit, 1984). - Amiram Eldar, Jun 03 2021

A231667 a(n) = Sum_{i=0..n} digsum_4(i)^4, where digsum_4(i) = A053737(i).

Original entry on oeis.org

0, 1, 17, 98, 99, 115, 196, 452, 468, 549, 805, 1430, 1511, 1767, 2392, 3688, 3689, 3705, 3786, 4042, 4058, 4139, 4395, 5020, 5101, 5357, 5982, 7278, 7534, 8159, 9455, 11856, 11872, 11953, 12209, 12834, 12915, 13171, 13796, 15092, 15348, 15973, 17269, 19670, 20295, 21591, 23992, 28088, 28169, 28425, 29050, 30346, 30602, 31227, 32523, 34924, 35549, 36845, 39246, 43342
Offset: 0

Views

Author

N. J. A. Sloane, Nov 13 2013

Keywords

Crossrefs

Programs

  • PARI
    a(n) = sum(i=0, n, sumdigits(i, 4)^4); \\ Michel Marcus, Sep 20 2017

A231665 a(n) = Sum_{i=0..n} digsum_4(i)^2, where digsum_4(i) = A053737(i).

Original entry on oeis.org

0, 1, 5, 14, 15, 19, 28, 44, 48, 57, 73, 98, 107, 123, 148, 184, 185, 189, 198, 214, 218, 227, 243, 268, 277, 293, 318, 354, 370, 395, 431, 480, 484, 493, 509, 534, 543, 559, 584, 620, 636, 661, 697, 746, 771, 807, 856, 920, 929, 945, 970, 1006, 1022, 1047, 1083, 1132, 1157, 1193, 1242, 1306, 1342, 1391, 1455, 1536, 1537, 1541, 1550, 1566, 1570, 1579, 1595, 1620, 1629
Offset: 0

Views

Author

N. J. A. Sloane, Nov 13 2013

Keywords

Crossrefs

Programs

  • MATLAB
    for u=0:2000; v(u+1)=sum(dec2base(u,4)-'0');end
    sol=cumsum(v.^2); % Marius A. Burtea, Jan 18 2019
  • PARI
    a(n) = sum(i=0, n, sumdigits(i, 4)^2); \\ Michel Marcus, Sep 20 2017
    

A231666 a(n) = Sum_{i=0..n} digsum_4(i)^3, where digsum_4(i) = A053737(i).

Original entry on oeis.org

0, 1, 9, 36, 37, 45, 72, 136, 144, 171, 235, 360, 387, 451, 576, 792, 793, 801, 828, 892, 900, 927, 991, 1116, 1143, 1207, 1332, 1548, 1612, 1737, 1953, 2296, 2304, 2331, 2395, 2520, 2547, 2611, 2736, 2952, 3016, 3141, 3357, 3700, 3825, 4041, 4384, 4896, 4923, 4987, 5112, 5328, 5392, 5517, 5733, 6076, 6201, 6417, 6760, 7272, 7488, 7831, 8343, 9072, 9073, 9081, 9108, 9172
Offset: 0

Views

Author

N. J. A. Sloane, Nov 13 2013

Keywords

Crossrefs

Programs

  • MATLAB
    for u=0:2000; v(u+1)=sum(dec2base(u,4)-'0'); end
    sol=cumsum(v.^3); % Marius A. Burtea, Jan 18 2019
  • PARI
    a(n) = sum(i=0, n, sumdigits(i, 4)^3); \\ Michel Marcus, Sep 20 2017
    

A333596 a(0) = 0; for n > 0, a(n) = a(n-1) + (number of 1's and 3's in base-4 representation of n) - (number of 0's and 2's in base-4 representation of n).

Original entry on oeis.org

0, 1, 0, 1, 1, 3, 3, 5, 3, 3, 1, 1, 1, 3, 3, 5, 4, 5, 4, 5, 6, 9, 10, 13, 12, 13, 12, 13, 14, 17, 18, 21, 18, 17, 14, 13, 12, 13, 12, 13, 10, 9, 6, 5, 4, 5, 4, 5, 4, 5, 4, 5, 6, 9, 10, 13, 12, 13, 12, 13, 14, 17, 18, 21, 19, 19, 17, 17, 17, 19, 19, 21, 19, 19
Offset: 0

Views

Author

Keywords

Comments

Local maxima values minus 1 are divisible by 4.
For a digit-wise recurrence, it's convenient to sum n terms so b(n) = a(n-1) = Sum_{i=0..n-1} A334841(i). Then b(4n+r) = 4*b(n) + r*A334841(n) + (1 if r even), for 0 <= r <= 3 and 4n+r >= 1. This is 4 copies of terms 0..n-1 and r copies of the following n. The new lowest digits cancel when r is odd, or net +1 when r is even. Repeatedly expanding gives the PARI code below. - Kevin Ryde, Jun 02 2020

Examples

			      n in    #odd    #even
  n  base 4  digits - digits + a(n-1) = a(n)
  =  ======  ===============================
  0    0        0   -                     0
  1    1        1   -    0   +    0   =   1
  2    2        0   -    1   +    1   =   0
  3    3        1   -    0   +    0   =   1
  4   10        1   -    1   +    1   =   1
  5   11        2   -    0   +    1   =   3
  6   12        1   -    1   +    3   =   3
  7   13        2   -    0   +    3   =   5
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n=0, 0, a(n-1) +add(
         `if`(i in [1, 3], 1, -1), i=convert(n, base, 4)))
        end:
    seq(a(n), n=0..80);  # Alois P. Heinz, May 30 2020
  • Mathematica
    f[n_] := Total[(-1)^(r = Range[0, 3]) * DigitCount[n, 4, r]]; a[0] = 0; a[n_] := a[n] = a[n - 1] - f[n]; Array[a, 100, 0] (* Amiram Eldar, Apr 24 2020 *)
  • PARI
    a(n) = my(v=digits(n+1,4),s=0); for(i=1,#v, my(t=v[i]); v[i]=t*s+!(t%2); s-=(-1)^t); fromdigits(v,4); \\ Kevin Ryde, May 30 2020
    
  • PARI
    b(n)=my(d=digits(n,4)); -sum(i=1,#d,(-1)^d[i])
    first(n)=my(s); concat(0,vector(n,k,s+=b(k))) \\ Charles R Greathouse IV, Jul 04 2020
    
  • Python
    import numpy as np
    def qnary(n):
        e = n//4
        q = n%4
        if n == 0 : return 0
        if e == 0 : return q
        if e != 0 : return np.append(qnary(e), q)
    m = 400
    v = [0]
    for i in range(1,m+1) :
        t = np.array(qnary(i))
        t[t%2 != 0] = 1
        t[t%2 == 0] = -1
        v = np.append(v, np.sum([np.sum(t), v[i-1]]))
    
  • Python
    from itertools import accumulate
    def A334841(n):
        return 2*bin(n)[-1:1:-2].count('1')-(len(bin(n))-1)//2 if n > 0 else 0
    A333596_list = list(accumulate(A334841(n) for n in range(10000))) # Chai Wah Wu, Sep 03 2020
  • R
    qnary = function(n, e, q){
      e = floor(n/4)
      q = n%%4
      if(n == 0 ){return(0)}
      if(e == 0){return(q)}
      else{return(c(qnary(e), (q)))}
    }
    m = 400
    s = seq(2,m)
    v = c(0)
    for(i in s){
      x = qnary(i-1)
      x[which(x%%2!=0)] = 1
      x[which(x%%2==0)] = -1
      v[i] = sum(x,v[i-1])
    }
    
Showing 1-5 of 5 results.