A245405
Number A(n,k) of endofunctions on [n] such that no element has a preimage of cardinality k; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 1, 1, 0, 2, 1, 1, 2, 6, 1, 1, 2, 3, 24, 1, 1, 4, 9, 40, 120, 1, 1, 4, 24, 76, 205, 720, 1, 1, 4, 27, 208, 825, 2556, 5040, 1, 1, 4, 27, 252, 2325, 10206, 24409, 40320, 1, 1, 4, 27, 256, 3025, 31956, 143521, 347712, 362880, 1, 1, 4, 27, 256, 3120, 44406, 520723, 2313200, 4794633, 3628800
Offset: 0
Square array A(n,k) begins:
0 : 1, 1, 1, 1, 1, 1, 1, ...
1 : 1, 0, 1, 1, 1, 1, 1, ...
2 : 2, 2, 2, 4, 4, 4, 4, ...
3 : 6, 3, 9, 24, 27, 27, 27, ...
4 : 24, 40, 76, 208, 252, 256, 256, ...
5 : 120, 205, 825, 2325, 3025, 3120, 3125, ...
6 : 720, 2556, 10206, 31956, 44406, 46476, 46650, ...
Column k=0-10 give:
A000142,
A231797,
A245406,
A245407,
A245408,
A245409,
A245410,
A245411,
A245412,
A245413,
A245414.
-
b:= proc(n, i, k) option remember; `if`(n=0 and i=0, 1,
`if`(i<1, 0, add(`if`(j=k, 0, b(n-j, i-1, k)*
binomial(n, j)), j=0..n)))
end:
A:= (n, k)-> b(n$2, k):
seq(seq(A(n, d-n), n=0..d), d=0..14);
-
nn = n; f[m_]:=Flatten[Table[m[[j, i - j + 1]], {i, 1, Length[m]}, {j, 1, i}]]; f[Transpose[Table[Prepend[Table[n! Coefficient[Series[(Exp[x] -x^k/k!)^n, {x, 0, nn}],x^n], {n, 1, 10}], 1], {k, 0, 10}]]] (* Geoffrey Critzer, Jan 31 2015 *)
A254382
Number of rooted labeled trees on n nodes such that every nonroot node is the child of a branching node or of the root.
Original entry on oeis.org
0, 1, 2, 3, 16, 85, 696, 6349, 72080, 918873, 13484080, 219335281, 3962458248, 78203547877, 1680235050872, 38958029188485, 970681471597216, 25847378934429361, 732794687650764000, 22032916968153975769, 700360446794528578520
Offset: 0
a(5) = 85:
...0................0...............0-o...
...|.............../ \............ /|\....
...o..............o o...........o o o...
../|\............/ \ ...................
.o o o..........o o ..................
These trees have 20 + 60 + 5 = 85 labelings.
From _Gus Wiseman_, Jan 22 2020: (Start)
The a(1) = 1 through a(4) = 16 trees (in the format root[branches]) are:
1 1[2] 1[2,3] 1[2,3,4]
2[1] 2[1,3] 1[2[3,4]]
3[1,2] 1[3[2,4]]
1[4[2,3]]
2[1,3,4]
2[1[3,4]]
2[3[1,4]]
2[4[1,3]]
3[1,2,4]
3[1[2,4]]
3[2[1,4]]
3[4[1,2]]
4[1,2,3]
4[1[2,3]]
4[2[1,3]]
4[3[1,2]]
(End)
Lone-child-avoiding rooted trees are
A001678(n + 1).
Labeled topologically series-reduced rooted trees are
A060313.
Labeled lone-child-avoiding unrooted trees are
A108919.
-
nn = 20; b = 1 + Sum[nn = n; n! Coefficient[Series[(Exp[x] - x)^n, {x, 0, nn}], x^n]*x^n/n!, {n,1, nn}]; c = Sum[a[n] x^n/n!, {n, 0, nn}]; sol = SolveAlways[b == Series[1/(1 - (c - x)), {x, 0, nn}], x]; Flatten[Table[a[n], {n, 0, nn}] /. sol]
nn = 30; CoefficientList[Series[1+x-1/Sum[SeriesCoefficient[(E^x-x)^n,{x,0,n}]*x^n,{n,0,nn}],{x,0,nn}],x] * Range[0,nn]! (* Vaclav Kotesovec, Jan 30 2015 *)
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
lrt[set_]:=If[Length[set]==0,{},Join@@Table[Apply[root,#]&/@Join@@Table[Tuples[lrt/@stn],{stn,sps[DeleteCases[set,root]]}],{root,set}]];
Table[Length[Select[lrt[Range[n]],FreeQ[Z@@#,Integer[]]&]],{n,6}] (* Gus Wiseman, Jan 22 2020 *)
Original entry on oeis.org
1, 1, 8, 54, 584, 7350, 114162, 2053688, 42513984, 991883610, 25807006730, 740614555692, 23250961252752, 792694751381078, 29169262097277330, 1152329533163353680, 48645406703597457152, 2185462919071085059890, 104113841197940277430554, 5242449827954998459195220
Offset: 1
-
M:=20;
T[1,1]:=1:
for n from 2 to M do
T[n,n]:=(n-1)^(n-1);
for k from n-1 by -1 to 1 do
T[n,k]:=T[n,k+1]-(n-1)*T[n-1,k]:
od:
od:
f:=n->(n^n-T[n+1,1])/n;[seq(f(n),n=1..M-1)];
A245496
a(n) = n! * [x^n] (exp(x)+x)^n.
Original entry on oeis.org
1, 2, 10, 87, 1096, 18045, 365796, 8793337, 244327616, 7701562377, 271493172100, 10582453248741, 451909972458000, 20980984760560045, 1052197311966267572, 56683993296812515425, 3264626390205804733696, 200168726219982496336401, 13017989155680578824221060
Offset: 0
-
Table[n!*SeriesCoefficient[(E^x+x)^n, {x, 0, n}], {n, 0, 20}]
Flatten[{1,Table[n!+Sum[Binomial[n,j]^2*(n-j)^(n-j)*j!,{j,0,n-1}],{n,1,20}]}]
-
seq(n)={Vec(serlaplace(1/((1 - x) * (1 + lambertw(-x/(1 - x) + O(x*x^n))))), -(n+1))} \\ Andrew Howroyd, Jan 25 2020
-
a(n) = n!*sum(k=0, n, k^k/k!*binomial(n, k)); \\ Seiichi Manyama, Jul 19 2022
A206823
Triangular array read by rows: T(n,k) is the number of functions f:{1,2,...,n}->{1,2,...,n} with exactly k elements x such that |f^(-1)(x)| = 1; n>=0, 0<=k<=n.
Original entry on oeis.org
1, 0, 1, 2, 0, 2, 3, 18, 0, 6, 40, 48, 144, 0, 24, 205, 1000, 600, 1200, 0, 120, 2556, 7380, 18000, 7200, 10800, 0, 720, 24409, 125244, 180810, 294000, 88200, 105840, 0, 5040, 347712, 1562176, 4007808, 3857280, 4704000, 1128960, 1128960, 0, 40320
Offset: 0
Triangle T(n,k) begins:
1;
0 1;
2 0 2;
3 18 0 6;
40 48 144 0 24;
205 1000 600 1200 0 120;
...
-
with(combinat): C:= binomial:
b:= proc(t, i, u) option remember; `if`(t=0, 1,
`if`(i<2, 0, b(t, i-1, u) +add(multinomial(t, t-i*j, i$j)
*b(t-i*j, i-1, u-j)*u!/(u-j)!/j!, j=1..t/i)))
end:
T:= (n, k)-> C(n, k)*C(n, k)*k! *b(n-k$2, n-k):
seq(seq(T(n, k), k=0..n), n=0..10); # Alois P. Heinz, Nov 13 2013
-
nn = 8; Prepend[CoefficientList[Table[n! Coefficient[Series[(Exp[x] - x + y x)^n, {x, 0, nn}], x^n], {n, 1, nn}], y], {1}] // Flatten
A241580
Triangle read by rows: T(n,k) (1 <= k <= n) defined by T(n,n) = (n-1)^(n-1), T(n,k) = T(n,k+1) - (n-1)*T(n-1,k) for k = n-1 .. 1.
Original entry on oeis.org
1, 0, 1, 2, 2, 4, 3, 9, 15, 27, 40, 52, 88, 148, 256, 205, 405, 665, 1105, 1845, 3125, 2556, 3786, 6216, 10206, 16836, 27906, 46656, 24409, 42301, 68803, 112315, 183757, 301609, 496951, 823543, 347712, 542984, 881392, 1431816, 2330336, 3800392, 6213264, 10188872, 16777216
Offset: 1
Triangle begins:
1;
0, 1;
2, 2, 4;
3, 9, 15, 27;
40, 52, 88, 148, 256;
205, 405, 665, 1105, 1845, 3125;
2556, 3786, 6216, 10206, 16836, 27906, 46656;
24409, 42301, 68803, 112315, 183757, 301609, 496951, 823543;
...
-
M:=20;
M2:=10;
T[1,1]:=1:
for n from 2 to M do
T[n,n]:=(n-1)^(n-1);
for k from n-1 by -1 to 1 do
T[n,k]:=T[n,k+1]-(n-1)*T[n-1,k]:
od:
od:
for n from 1 to M2 do lprint([seq(T[n,k],k=1..n)]); od:
A331727
E.g.f.: -LambertW(-x/(1 + x)) / (1 + x).
Original entry on oeis.org
0, 1, -2, 9, -32, 225, -1044, 11515, -53696, 1056321, -2809700, 164953371, 374457744, 42734920657, 415505963068, 17518516958475, 310367497789696, 10529847396874497, 258747727039635132, 8599295530916762779, 258064489282796717200, 9014901067536225062481
Offset: 0
-
nmax = 21; CoefficientList[Series[-LambertW[-x/(1 + x)]/(1 + x), {x, 0, nmax}], x] Range[0, nmax]!
Table[Sum[(-1)^k Binomial[n, k]^2 k! (n - k)^(n - k - 1), {k, 0, n - 1}], {n, 0, 21}]
-
seq(n)={Vec(serlaplace(-lambertw(-x/(1 + x) + O(x*x^n)) / (1 + x)), -(n+1))} \\ Andrew Howroyd, Jan 25 2020
Showing 1-7 of 7 results.
Comments