cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A036039 Irregular triangle of multinomial coefficients of integer partitions read by rows (in Abramowitz and Stegun ordering) giving the coefficients of the cycle index polynomials for the symmetric groups S_n.

Original entry on oeis.org

1, 1, 1, 2, 3, 1, 6, 8, 3, 6, 1, 24, 30, 20, 20, 15, 10, 1, 120, 144, 90, 40, 90, 120, 15, 40, 45, 15, 1, 720, 840, 504, 420, 504, 630, 280, 210, 210, 420, 105, 70, 105, 21, 1, 5040, 5760, 3360, 2688, 1260, 3360, 4032, 3360, 1260, 1120, 1344, 2520, 1120, 1680, 105, 420, 1120, 420, 112, 210, 28, 1
Offset: 1

Views

Author

Keywords

Comments

The sequence of row lengths is A000041(n), n >= 1 (partition numbers).
Number of permutations whose cycle structure is the given partition. Row sums are factorials (A000142). - Franklin T. Adams-Watters, Jan 12 2006
A relation between partition polynomials formed from these "refined" Stirling numbers of the first kind and umbral operator trees and Lagrange inversion is presented in the link "Lagrange a la Lah".
These cycle index polynomials for the symmetric group S_n are also related to a raising operator / infinitesimal generator for fractional integro-derivatives, involving the digamma function and the Riemann zeta function values at positive integers, and to the characteristic polynomial for the adjacency matrix of complete n-graphs A055137 (cf. MathOverflow link). - Tom Copeland, Nov 03 2012
In the Lang link, replace all x(n) by t to obtain A132393. Furthermore replace x(1) by t and all other x(n) by 1 to obtain A008290. See A274760. - Tom Copeland, Nov 06 2012, Oct 29 2015 - corrected by Johannes W. Meijer, Jul 28 2016
The umbral compositional inverses of these polynomials are formed by negating the indeterminates x(n) for n>1, i.e., P(n,P(.,x(1),-x(2),-x(3),...),x(2),x(3),...) = x(1)^n (cf. A130561 for an example of umbral compositional inversion). The polynomials are an Appell sequence in x(1), i.e., dP(n,x(1))/dx(1) = n P(n-1, x(1)) and (P(.,x)+y)^n=P(n,x+y) umbrally, with P(0,x(1))=1. - Tom Copeland, Nov 14 2014
Regarded as the coefficients of the partition polynomials listed by Lang, a signed version of these polynomials IF(n,b1,b2,...,bn) (n! times polynomial on page 184 of Airault and Bouali) provides an inversion of the Faber polynomials F(n,b1,b2,...,bn) (page 52 of Bouali, A263916, and A115131). For example, F(3, IF(1,b1), IF(2,b1,b2)/2!, IF(3,b1,b2,b3)/3!) = b3 and IF(3, F(1,b1), F(2,b1,b2), F(3,b1,b2,b3))/3! = b3 with F(1,b1) = -b1. (Compare with A263634.) - Tom Copeland, Oct 28 2015; Sep 09 2016
The e.g.f. for the row partition polynomials is Sum_{n>=0} P_n(b_1,...,b_n) x^n/n! = exp[Sum_{n>=1} b_n x^n/n], or, exp[P.(b_1,...,b_n)x] = exp[-], expressed umbrally with <"power series"> denoting umbral evaluation (b.)^n = b_n within the power series. This e.g.f. is central to the paper by Maxim and Schuermannn on characteristic classes (cf. Friedrich and McKay also). - Tom Copeland, Nov 11 2015
The elementary Schur polynomials are given by S(n,x(1),x(2),...,x(n)) = P(n,x(1), 2*x(2),...,n*x(n)) / n!. See p. 12 of Carrell. - Tom Copeland, Feb 06 2016
These partition polynomials are also related to the Casimir invariants associated to quantum density states on p. 3 of Boya and Dixit and pp. 5 and 6 of Byrd and Khaneja. - Tom Copeland, Jul 24 2017
With the indeterminates (x_1,x_2,x_3,...) = (t,-c_2*t,-c_3*t,...) with c_n >0, umbrally P(n,a.) = P(n,t)|{t^n = a_n} = 0 and P(j,a.)P(k,a.) = P(j,t)P(k,t)|{t^n =a_n} = d_{j,k} >= 0 is the coefficient of x^j/j!*y^k/k! in the Taylor series expansion of the formal group law FGL(x,y) = f[f^{-1}(x)+f^{-1}(y)], where a_n are the inversion partition polynomials for calculating f(x) from the coefficients of the series expansion of f^{-1}(x) given in A133932. - Tom Copeland, Feb 09 2018
For relation to the Witt symmetric functions, as well as the basic power, elementary, and complete symmetric functions, see the Borger link p. 295. For relations to diverse zeta functions, determinants, and paths on graphs, see the MathOverflow question Cycling Through the Zeta Garden. - Tom Copeland, Mar 25 2018
Chmutov et al. identify the partition polynomials of this entry with the one-part Schur polynomials and assert that any linear combination with constant coefficients of these polynomials is a tau function for the KP hierarchy. - Tom Copeland, Apr 05 2018
With the indeterminates in the partition polynomials assigned as generalized harmonic numbers, i.e., as partial sums of the Dirichlet series for the Riemann zeta function, zeta(n), for integer n > 1, sums of simple normalizations of these polynomials give either unity or simple sums of consecutive zeta(n) (cf. Hoffman). Other identities involving these polynomials can be found in the Choi reference in Hoffman's paper. - Tom Copeland, Oct 05 2019
On p. 39 of Ma Luo's thesis is the e.g.f. of rational functions r_n obtained through the (umbral) formula 1/(1-r.T) = exp[log(1+P.T)], a differently signed e.g.f. of this entry, where (P.)^n = P_n are Eisenstein elliptic functions. P. 38 gives the example of 4! * r_4 as the signed 4th row partition polynomial of this entry. This series is equated through a simple proportionality factor to the Zagier Jacobi form on p. 25. Recurrence relations for the P_n are given on p. 24 involving the normalized k-weight Eisenstein series G_k introduced on p. 23 and related to the Bernoulli numbers. - Tom Copeland, Oct 16 2019
The Chern characteristic classes or forms of complex vector bundles and the characteristic polynomials of curvature forms for a smooth manifold can be expressed in terms of this entry's partition polynomials with the associated traces, or power sum polynomials, as the indeterminates. The Chern character is the e.g.f. of these traces and so its coefficients are given by the Faber polynomials with this entry's partition polynomials as the indeterminates. See the Mathoverflow question "A canonical reference for Chern characteristic classes". - Tom Copeland, Nov 04 2019
For an application to the physics of charged fermions in an external field, see Figueroa et al. - Tom Copeland, Dec 05 2019
Konopelchenko, in Proposition 5.2, p. 19, defines an operator P_k that is a differently signed operator version of the partition polynomials of this entry divided by a factorial. These operators give rise to bilinear Hirota equations for the KP hierarchy. These partition polynomials are also presented in Hopf algebras of symmetric functions by Cartier. - Tom Copeland, Dec 18 2019
For relationship of these partition polynomials to calculations of Pontryagin classes and the Riemann xi function, see A231846. - Tom Copeland, May 27 2020
Luest and Skliros summarize on p. 298 many of the properties of the cycle index polynomials given here; and Bianchi and Firrotta, a few on p. 6. - Tom Copeland, Oct 15 2020
From Tom Copeland, Oct 15 2020: (Start)
With a_n = n! * b_n = (n-1)! * c_n for n > 0, represent a function with f(0) = a_0 = b_0 = 1 as an
A) exponential generating function (e.g.f), or formal Taylor series: f(x) = e^{a.x} = 1 + Sum_{n > 0} a_n * x^n/n!
B) ordinary generating function (o.g.f.), or formal power series: f(x) = 1/(1-b.x) = 1 + Sum_{n > 0} b_n * x^n
C) logarithmic generating function (l.g.f): f(x) = 1 - log(1 - c.x) = 1 + Sum_{n > 0} c_n * x^n /n.
Expansions of log(f(x)) are given in
I) A127671 and A263634 for the e.g.f: log[ e^{a.*x} ] = e^{L.(a_1,a_2,...)x} = Sum_{n > 0} L_n(a_1,...,a_n) * x^n/n!, the logarithmic polynomials, cumulant expansion polynomials
II) A263916 for the o.g.f.: log[ 1/(1-b.x) ] = log[ 1 - F.(b_1,b_2,...)x ] = -Sum_{n > 0} F_n(b_1,...,b_n) * x^n/n, the Faber polynomials.
Expansions of exp(f(x)-1) are given in
III) A036040 for an e.g.f: exp[ e^{a.x} - 1 ] = e^{BELL.(a_1,...)x}, the Bell/Touchard/exponential partition polynomials, a.k.a. the Stirling partition polynomials of the second kind
IV) A130561 for an o.g.f.: exp[ b.x/(1-b.x) ] = e^{LAH.(b.,...)x}, the Lah partition polynomials
V) A036039 for an l.g.f.: exp[ -log(1-c.x) ] = e^{CIP.(c_1,...)x}, the cycle index polynomials of the symmetric groups S_n, a.k.a. the Stirling partition polynomials of the first kind.
Since exp and log are a compositional inverse pair, one can extract the indeterminates of the log set of partition polynomials from the exp set and vice versa. For a discussion of the relations among these polynomials and the combinatorics of connected and disconnected graphs/maps, see Novak and LaCroix on classical moments and cumulants and the two books on statistical mechanics referenced in A036040. (End)

Examples

			The partition array T(n, k) begins (see the W. Lang link for rows 1..10):
  n\k   1    2    3    4    5    6    7    8    9   10   11  12   13  14 15 ...
  1:    1
  2:    1    1
  3:    2    3    1
  4:    6    8    3    6    1
  5:   24   30   20   20   15   10    1
  6:  120  144   90   40   90  120   15   40   45   15    1
  7:  720  840  504  420  504  630  280  210  210  420  105  70  105  21  1
... reformatted by _Wolfdieter Lang_, May 25 2019
		

References

  • Abramowitz and Stegun, Handbook, p. 831, column labeled "M_2".

Crossrefs

Cf. other versions based on different partition orderings: A102189 (rows reversed), A181897, A319192.
Cf. A133932.
Cf. A231846.
Cf. A127671.

Programs

  • Maple
    nmax:=7: with(combinat): for n from 1 to nmax do P(n):=sort(partition(n)): for r from 1 to numbpart(n) do B(r):=P(n)[r] od: for m from 1 to numbpart(n) do s:=0: j:=0: while sA036039(n, m) := n!/ (mul((t)^q(t)*q(t)!, t=1..n)); od: od: seq(seq(A036039(n, m), m=1..numbpart(n)), n=1..nmax); # Johannes W. Meijer, Jul 14 2016
    # 2nd program:
    A036039 := proc(n,k)
        local a,prts,e,ai ;
        a := n! ;
        # ASPrts is implemented in A119441
        prts := ASPrts(n)[k] ;
        ai := 1;
        for e from 1 to nops(prts) do
            if e>1 then
                if op(e,prts) = op(e-1,prts) then
                    ai := ai+1 ;
                else
                    ai := 1;
                end if;
            end if;
            a := a/(op(e,prts)*ai) ;
        end do:
        a ;
    end proc:
    seq(seq(A036039(n,k),k=1..combinat[numbpart](n)),n=1..15) ; # R. J. Mathar, Dec 18 2016
  • Mathematica
    aspartitions[n_]:=Reverse/@Sort[Sort/@IntegerPartitions[n]];(* Abramowitz & Stegun ordering *);
    ascycleclasses[n_Integer]:=n!/(Times@@ #)&/@((#!
    Range[n]^#)&/@Function[par,Count[par,# ]&/@Range[n]]/@aspartitions[n])
    (* The function "ascycleclasses" is then identical with A&S multinomial M2. *)
    Table[ascycleclasses[n], {n, 1, 8}] // Flatten
    (* Wouter Meeussen, Jun 26 2009, Jun 27 2009 *)
  • Sage
    def PartAS(n):
        P = []
        for k in (1..n):
            Q = [p.to_list() for p in Partitions(n, length=k)]
            for q in Q: q.reverse()
            P = P + sorted(Q)
        return P
    def A036039_row(n):
        fn, C = factorial(n), []
        for q in PartAS(n):
            q.reverse()
            p = Partition(q)
            fp = 1; pf = 1
            for a, c in p.to_exp_dict().items():
                fp *= factorial(c)
                pf *= factorial(a)**c
            co = fn//(fp*pf)
            C.append(co*prod([factorial(i-1) for i in p]))
        return C
    for n in (1..10):
        print(A036039_row(n)) # Peter Luschny, Dec 18 2016

Formula

T(n,k) = n!/Product_{j=1..n} j^a(n,k,j)*a(n,k,j)!, with the k-th partition of n >= 1 in Abromowitz-Stegun order written as Product_{j=1..n} j^a(n,k,j) with nonnegative integers a(n,k,j) satisfying Sum_{j=1..n} j*a(n,k,j) = n, and the number of parts is Sum_{j=1..n} a(n,k,j) =: m(n,k). - Wolfdieter Lang, May 25 2019
Raising and lowering operators are given for the partition polynomials formed from this sequence in the link in "Lagrange a la Lah Part I" on p. 23. - Tom Copeland, Sep 18 2011
From Szabo p. 34, with b_n = q^n / (1-q^n)^2, the partition polynomials give an expansion of the MacMahon function M(q) = Product_{n>=1} 1/(1-q^n)^n = Sum_{n>=0} PL(n) q^n, the generating function for PL(n) = n! P_n(b_1,...,b_n), the number of plane partitions with sum n. - Tom Copeland, Nov 11 2015
From Tom Copeland, Nov 18 2015: (Start)
The partition polynomials of A036040 are obtained by substituting x[n]/(n-1)! for x[n] in the partition polynomials of this entry.
CIP_n(t-F(1,b1),-F(2,b1,b2),...,-F(n,b1,...,bn)) = P_n(b1,...,bn;t), where CIP_n are the partition polynomials of this entry; F(n,...), those of A263916; and P_n, those defined in my formula in A094587, e.g., P_2(b1,b2;t) = 2 b2 + 2 b1 t + t^2.
CIP_n(-F(1,b1),-F(2,b1,b2),...,-F(n,b1,...,bn)) = n! bn. (End)
From the relation to the elementary Schur polynomials given in A130561 and above, the partition polynomials of this array satisfy (d/d(x_m)) P(n,x_1,...,x_n) = (1/m) * (n!/(n-m)!) * P(n-m,x_1,...,x_(n-m)) with P(k,...) = 0 for k<0. - Tom Copeland, Sep 07 2016
Regarded as Appell polynomials in the indeterminate x(1)=u, the partition polynomials of this entry P_n(u) obey d/du P_n(u) = n * P_{n-1}(u), so the abscissas for the zeros of P_n(u) are the same as those of the extrema of P{n+1}(u). In addition, the coefficient of u^{n-1} in P_{n}(u) is zero since these polynomials are related to the characteristic polynomials of matrices with null main diagonals, and, therefore, the trace is zero, further implying the abscissa for any zero is the negative of the sum of the abscissas of the remaining zeros. This assumes all zeros are distinct and real. - Tom Copeland, Nov 10 2019

Extensions

More terms from David W. Wilson
Title expanded by Tom Copeland, Oct 15 2020

A039683 Signed double Pochhammer triangle: expansion of x(x-2)(x-4)..(x-2n+2).

Original entry on oeis.org

1, -2, 1, 8, -6, 1, -48, 44, -12, 1, 384, -400, 140, -20, 1, -3840, 4384, -1800, 340, -30, 1, 46080, -56448, 25984, -5880, 700, -42, 1, -645120, 836352, -420224, 108304, -15680, 1288, -56, 1, 10321920, -14026752, 7559936, -2153088, 359184, -36288, 2184, -72, 1
Offset: 1

Views

Author

Keywords

Comments

T(n,m) = R_n^m(a=0,b=2) in the notation of the given reference.
Exponential Riordan array [1/(1+2x),log(1+2x)/2]. The unsigned triangle is [1/(1-2x),log(1/sqrt(1-2x))]. - Paul Barry_, Apr 29 2009
The n-th row is related to the expansion of z^(-2n)*(z^3 d/dz)^n in polynomials of the Euler operator D=(z d/dz). E.g., z^(-6)(z^3 d/dz)^3 = D^3 + 6 D^2 + 8 D. See Copeland link for relations to Bell / Exponential / Touchard polynomial operators. - Tom Copeland, Nov 14 2013
A refinement of this array is given by A231846. - Tom Copeland, Nov 15 2013
Also the Bell transform of the double factorial of even numbers A000165 except that the values are unsigned and in addition a first column (1,0,0 ...) is added on the left side of the triangle. For the Bell transform of the double factorial of odd numbers A001147 see A132062. For the definition of the Bell transform see A264428. - Peter Luschny, Dec 20 2015
The signed triangle is also the inverse Bell transform of A000079 (see Luschny link). - John Keith, Nov 24 2020

Examples

			Triangle starts:
  {1},
  {2,1},
  {8,6,1},
  {48,44,12,1},
  ...
From _Paul Barry_, Apr 29 2009: (Start)
The unsigned triangle [1/(1-2x),log(1/sqrt(1-2x))] has production matrix:
  2, 1,
  4, 4, 1,
  8, 12, 6, 1,
  16, 32, 24, 8, 1,
  32, 80, 80, 40, 10, 1,
  64, 192, 240, 160, 60, 12, 1
which is A007318^{2} beheaded. (End)
		

Crossrefs

First column (unsigned triangle) is (2(n-1))!! = 1, 2, 8, 48, 384...= A000165(n-1) and the row sums (unsigned) are (2n-1)!! = 1, 3, 15, 105, 945... = A001147(n-1).
Cf. A038207.

Programs

  • Mathematica
    Table[ Rest@ CoefficientList[ Product[ z-k, {k, 0, 2p-2, 2} ], z ], {p, 6} ]
  • Sage
    # uses[bell_transform from A264428]
    # Unsigned values and an additional first column (1,0,0,...).
    def A039683_unsigned_row(n):
        a = sloane.A000165
        dblfact = a.list(n)
        return bell_transform(n, dblfact)
    [A039683_unsigned_row(n) for n in (0..9)] # Peter Luschny, Dec 20 2015

Formula

T(n, m) = T(n-1, m-1) - 2*(n-1)*T(n-1, m), n >= m >= 1; T(n, m) := 0, n
E.g.f. for m-th column of signed triangle: (((log(1+2*x))/2)^m)/m!.
E.g.f.: (1+2*x)^(y/2). O.g.f. for n-th row of signed triangle: Sum_{m=0..n} Stirling1(n, m)*2^(n-m)*x^m. - Vladeta Jovovic, Feb 11 2003
T(n, m) = S1(n, m)*2^(n-m), with S1(n, m) := A008275(n, m) (signed Stirling1 triangle).
The production matrix below is A038207 with the first row removed. With the initial index n = 0, the associated differential raising operator is R = e^(2D)*x = (2+x)*e^(2D) with D = d/dx, i.e., R p_n(x) = p_(n+1)(x) where p_n(x) is the n-th unsigned row polynomial and p_0(x) = 1, so p_(n+1)(x) = (2+x) * p_n(2+x). - Tom Copeland, Oct 11 2016

Extensions

Additional comments from Wolfdieter Lang
Title revised by Tom Copeland, Dec 21 2013

A055140 Triangle read by rows: T(n, k) = number of matchings of 2n people with partners (of either sex) such that exactly k couples are left together.

Original entry on oeis.org

1, 0, 1, 2, 0, 1, 8, 6, 0, 1, 60, 32, 12, 0, 1, 544, 300, 80, 20, 0, 1, 6040, 3264, 900, 160, 30, 0, 1, 79008, 42280, 11424, 2100, 280, 42, 0, 1, 1190672, 632064, 169120, 30464, 4200, 448, 56, 0, 1, 20314880, 10716048, 2844288, 507360, 68544, 7560, 672, 72, 0, 1
Offset: 0

Author

Christian G. Bower, May 09 2000

Keywords

Comments

T is an example of the group of matrices outlined in the table in A132382--the associated matrix for aC(1,1). The e.g.f. for the row polynomials is exp(x*t) * exp(-x) * (1-2*x)^(-1/2). T(n,k) = Binomial(n,k)* s(n-k) where s = A053871 with an e.g.f. of exp(-x) * (1-2*x)^(-1/2) which is the reciprocal of the e.g.f. of A055142. The row polynomials form an Appell sequence. Tom Copeland, Sep 10 2008
A231846 provides a refinement of this array. - Tom Copeland, Oct 12 2016

Examples

			Triangle T(n,k) starts:
     1;
     0,    1;
     2,    0,   1;
     8,    6,   0,   1;
    60,   32,  12,   0,  1;
   544,  300,  80,  20,  0, 1;
  6040, 3264, 900, 160, 30, 0, 1;
  ...
		

Crossrefs

First column is A053871.
Row sums are A001147.

Programs

  • Maple
    g[0] := 1: g[1] := 0: for n from 2 to 20 do g[n] := (2*(n-1))*(g[n-1]+g[n-2]) end do: T := proc (n, k) options operator, arrow; g[n-k]*binomial(n, k) end proc: for n from 0 to 10 do seq(T(n, k), k = 0 .. n) end do; # yields sequence in triangular form; Emeric Deutsch, Jan 24 2009
  • Mathematica
    Table[(-1)^# HypergeometricPFQ[{1/2, -#}, {}, 2] Binomial[n, k] &[n - k], {n, 0, 9}, {k, 0, n}] // Flatten (* Michael De Vlieger, Jul 10 2019, after Eric W. Weisstein at A053871 *)

Formula

T(n, k) = A053871(n-k)*binomial(n, k).
From Tom Copeland, Oct 12 2016: (Start)
E.g.f.: e^(xt) e^(-t) (1-2t)^(-1/2) = e^(p.(x)*t)(from my 2008 comment).
Row sums are A001147.
L = D = d/dx and R = x + d[log[e^(L)(1-2L)^(-1/2)]]/dL = x - 1 + 1/(1-2D) = x + 2D + (2D)^2 + (2D)^3 + ... are the lowering and raising operators, i.e., L p_n(x) = n * p_(n-1)(x) and R p_n(x) = p_(n+1)(x); e.g., L p_2(x) = D (2 + x^2) = 2 x = 2 p_1(x) and R P_2(x) = (x + 2D + 4D^2 + ...) (2 + x^2) = 2x + x^3 + 4x + 8 = 8 + 6x + x^3 = p_3(x).
Another generator is (1-2D)^(-1/2) e^(-D) x^n = (1-2D)^(-1/2) (x-1)^n = p_n(x). For example, (1-2D)^(-1/2)(x-1)^2 = (1 + D + 3 D^2/2 + ...) (x-1)^2 = (x-1)^2 + 2(x-1) + 3 = 2 + x^2 = p_2(x).
Umbral binomial convolution gives p_n(x) = (a. + x)^n = sum_{k = 0,..,n} C(n,k) a_(n-k) * x^k with (a.)^k = a_k = A053871(k).
The Appell sequence of umbral compositional inverses has the e.g.f. e^(xt) e^t (1-2t)^(1/2) associated with A055142. Cf. A231846 for a definition of umbral compositional inversion.
See A132382 and A133314 for more relations.
(End)

A119275 Inverse of triangle related to Padé approximation of exp(x).

Original entry on oeis.org

1, -2, 1, 0, -6, 1, 0, 12, -12, 1, 0, 0, 60, -20, 1, 0, 0, -120, 180, -30, 1, 0, 0, 0, -840, 420, -42, 1, 0, 0, 0, 1680, -3360, 840, -56, 1, 0, 0, 0, 0, 15120, -10080, 1512, -72, 1, 0, 0, 0, 0, -30240, 75600, -25200, 2520, -90, 1, 0, 0, 0, 0, 0, -332640, 277200, -55440, 3960, -110, 1
Offset: 0

Author

Paul Barry, May 12 2006

Keywords

Comments

Inverse of A119274.
Row sums are (-1)^(n+1)*A000321(n+1).
Bell polynomials of the second kind B(n,k)(1,-2). - Vladimir Kruchinin, Mar 25 2011
Also the inverse Bell transform of the quadruple factorial numbers Product_{k=0..n-1} (4*k+2) (A001813) giving unsigned values and adding 1,0,0,0,... as column 0. For the definition of the Bell transform see A264428 and for cross-references A265604. - Peter Luschny, Dec 31 2015

Examples

			Triangle begins
1,
-2, 1,
0, -6, 1,
0, 12, -12, 1,
0, 0, 60, -20, 1,
0, 0, -120, 180, -30, 1,
0, 0, 0, -840, 420, -42, 1,
0, 0, 0, 1680, -3360, 840, -56, 1,
0, 0, 0, 0, 15120, -10080, 1512, -72, 1
Row 4: D(x^4) = (1 - x*(d/dx)^2 + x^2/2!*(d/dx)^4 - ...)(x^4) = x^4 - 12*x^3 + 12*x^2.
		

Crossrefs

Cf. A059344 (unsigned row reverse).

Programs

  • Maple
    # The function BellMatrix is defined in A264428.
    # Adds (1,0,0,0, ..) as column 0.
    BellMatrix(n -> `if`(n<2,(n+1)*(-1)^n,0), 9); # Peter Luschny, Jan 27 2016
  • Mathematica
    Table[(-1)^(n - k) (n - k)!*Binomial[n + 1, k + 1] Binomial[k + 1, n - k], {n, 0, 10}, {k, 0, n}] // Flatten (* Michael De Vlieger, Oct 12 2016 *)
    BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];
    rows = 12;
    M = BellMatrix[If[#<2, (#+1) (-1)^#, 0]&, rows];
    Table[M[[n, k]], {n, 2, rows}, {k, 2, n}] // Flatten (* Jean-François Alcover, Jun 24 2018, after Peter Luschny *)
  • Sage
    # uses[inverse_bell_matrix from A265605]
    # Unsigned values and an additional first column (1,0,0, ...).
    multifact_4_2 = lambda n: prod(4*k + 2 for k in (0..n-1))
    inverse_bell_matrix(multifact_4_2, 9) # Peter Luschny, Dec 31 2015

Formula

T(n,k) = [k<=n]*(-1)^(n-k)*(n-k)!*C(n+1,k+1)*C(k+1,n-k).
From Peter Bala, May 07 2012: (Start)
E.g.f.: exp(x*(t-t^2)) - 1 = x*t + (-2*x+x^2)*t^2/2! + (-6*x^2+x^3)*t^3/3! + (12*x^2-12*x^3+x^4)*t^4/4! + .... Cf. A059344. Let D denote the operator sum {k >= 0} (-1)^k/k!*x^k*(d/dx)^(2*k). The n-th row polynomial R(n,x) = D(x^n) and satisfies the recurrence equation R(n+1,x) = x*R(n,x)-2*n*x*R(n-1,x). The e.g.f. equals D(exp(x*t)).
(End)
From Tom Copeland, Oct 11 2016: (Start)
With initial index n = 1 and unsigned, these are the partition row polynomials of A130561 and A231846 with c_1 = c_2 = x and c_n = 0 otherwise. The first nonzero, unsigned element of each diagonal is given by A001813 (for each row, A001815) and dividing along the corresponding diagonal by this element generates A098158 with its first column removed (cf. A034839 and A086645).
The n-th polynomial is generated by (x - 2y d/dx)^n acting on 1 and then evaluated at y = x, e.g., (x - 2y d/dx)^2 1 = (x - 2y d/dx) x = x^2 - 2y evaluated at y = x gives p_2(x) = -2x + x^2.
(End)
Showing 1-4 of 4 results.