cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A077065 Semiprimes of form prime - 1.

Original entry on oeis.org

4, 6, 10, 22, 46, 58, 82, 106, 166, 178, 226, 262, 346, 358, 382, 466, 478, 502, 562, 586, 718, 838, 862, 886, 982, 1018, 1186, 1282, 1306, 1318, 1366, 1438, 1486, 1522, 1618, 1822, 1906, 2026, 2038, 2062, 2098, 2206, 2446, 2458, 2578, 2818, 2878, 2902
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 23 2002

Keywords

Comments

There are 670 semiprimes of form prime-1 below 10^5.

Examples

			A001358(16) = 46 = 2*23 is a term as 46 = A000040(15) - 1 = 47 - 1.
		

Crossrefs

Intersection of A006093 and A001358.
Intersection of A006093 and A100484.

Programs

  • Haskell
    a077065 n = a077065_list !! (n-1)
    a077065_list = filter ((== 1) . a010051' . (`div` 2)) a006093_list
    -- Reinhard Zumkeller, Nov 22 2013, Oct 27 2012
    
  • Magma
    IsSemiprime:=func; [s: n in [2..500] | IsSemiprime(s) where s is NthPrime(n)-1]; // Vincenzo Librandi, Oct 17 2012
    
  • Maple
    q:= n-> (n::even) and andmap(isprime, [n+1, n/2]):
    select(q, [$1..5000])[];  # Alois P. Heinz, Jul 19 2023
  • Mathematica
    Select[Range[6000],Plus@@Last/@FactorInteger[#]==2&&PrimeQ[#+1]&] (* Vladimir Joseph Stephan Orlovsky, May 08 2011 *)
    Select[Range[3000],PrimeOmega[#]==2&&PrimeQ[#+1]&] (* Harvey P. Dale, Oct 16 2012 *)
    Select[ Prime@ Range@ 430 - 1, PrimeOmega@# == 2 &] (* Robert G. Wilson v, Feb 18 2014 *)
  • PARI
    [x-1|x<-primes(10^4),bigomega(x-1)==2] \\ Charles R Greathouse IV, Nov 22 2013

Formula

a(n) = A005385(n) - 1 = 2*A005384(n).
A010051(A006093(a(n))/2) = A064911(A006093(a(n))) = 1. - Reinhard Zumkeller, Nov 22 2013
a(n) = A077068(n) - A232342(n). - Reinhard Zumkeller, Dec 16 2013
a(n) = A000010(A194593(n+1)). - Torlach Rush, Aug 23 2018
A000010((a(n)*2)+2) = A023900((a(n)*2)+2). - Torlach Rush, Aug 23 2018

A077068 Semiprimes of the form prime + 1.

Original entry on oeis.org

4, 6, 14, 38, 62, 74, 158, 194, 278, 314, 398, 422, 458, 542, 614, 662, 674, 734, 758, 878, 998, 1094, 1154, 1202, 1214, 1238, 1322, 1382, 1454, 1622, 1658, 1754, 1874, 1934, 1994, 2018, 2138, 2342, 2474, 2558, 2594, 2798, 2858, 2918, 3062, 3218, 3254
Offset: 1

Views

Author

Reinhard Zumkeller, Oct 23 2002

Keywords

Comments

a(n) = A005383(n)+1 = 2*A005382(n).
There are 672 semiprimes of form prime+1 below 100000.
a(n) = A232342(n) + A077065(n). - Reinhard Zumkeller, Dec 16 2013

Examples

			A001358(25)=74=2*37 is a term as 74=A000040(21)+1=73+1.
		

Crossrefs

Programs

Formula

A010051(A008864(n)/2) = A064911(A008864(n)) = 1. - Reinhard Zumkeller, Nov 22 2013

A232221 a(n) = Sum_{i=1..n} (A077068(i) - A077065(i)).

Original entry on oeis.org

0, 0, 4, 20, 36, 52, 128, 216, 328, 464, 636, 796, 908, 1092, 1324, 1520, 1716, 1948, 2144, 2436, 2716, 2972, 3264, 3580, 3812, 4032, 4168, 4268, 4416, 4720, 5012, 5328, 5716, 6128, 6504, 6700, 6932, 7248, 7684, 8180, 8676, 9268, 9680, 10140, 10624, 11024, 11400
Offset: 1

Views

Author

N. J. A. Sloane, Nov 22 2013, based on a posting by V.J. Pohjola to the Sequence Fans Mailing List, Nov 22 2013

Keywords

Comments

The sequence has wild fluctuations - see the successive plots in the links. This is typical behavior for a particle whose movement is governed by an arc-sine law (cf. Feller, Chap. III). - N. J. A. Sloane, Nov 23 2013
Negative stretches: terms 941-1031 and 13197-1431205. - Hans Havermann, Nov 23 2013
After reaching a local maximum of 21957005755012 at term 24118371, the sequence again descends with the first negative of a third such stretch at term 32437583. - Hans Havermann, Nov 28 2013
All terms are multiples of 4, cf. A008586. - Reinhard Zumkeller, Nov 22 2013
See A232361 and A232359 for peak values and where they occur: max{a(A232359(n)-1), a(A232359(n)+1)} < a(A232359(n)) = A232361(n). - Reinhard Zumkeller, Nov 24 2013

References

  • W. Feller, An Introduction to Probability Theory and its Applications, 3rd ed, Wiley, New York, 1968.

Crossrefs

Partial sums of A232342.

Programs

  • Haskell
    a232221 n = a232221_list !! (n-1)
    a232221_list = scanl1 (+) a232342_list
    -- Reinhard Zumkeller, Dec 16 2013, Nov 22 2013
Showing 1-3 of 3 results.