A156695 Odd numbers that are not of the form p + 2^a + 2^b, a, b > 0, p prime.
1, 3, 5, 6495105, 848629545, 1117175145, 2544265305, 3147056235, 3366991695, 3472109835, 3621922845, 3861518805, 4447794915, 4848148485, 5415281745, 5693877405, 6804302445, 7525056375, 7602256605, 9055691835, 9217432215
Offset: 1
Examples
Prime factorization of terms: F_0 = 3, F_1 = 5, F_2 = 17, F_3 = 257 are Fermat numbers (cf. A000215) 6495105 = 3 * 5 * 17 * 25471 848629545 = 3 * 5 * 17 * 461 * 7219 1117175145 = 3 * 5 * 17 * 257 * 17047 2544265305 = 3^2 * 5 * 17 * 257 * 12941 3147056235 = 3^2 * 5 * 17 * 257 * 16007 3366991695 = 3 * 5 * 17 * 83 * 257 * 619 3472109835 = 3 * 5 * 17 * 257 * 52981 3621922845 = 3 * 5 * 17^2 * 257 * 3251 3861518805 = 3^3 * 5 * 17 * 257 * 6547 4447794915 = 3^3 * 5 * 17 * 257 * 7541 4848148485 = 3^4 * 5 * 17 * 704161 5415281745 = 3 * 5 * 17 * 21236399 5693877405 = 3^2 * 5 * 17 * 257 * 28961 6804302445 = 3^2 * 5 * 17 * 53 * 257 * 653 7525056375 = 3^2 * 5^3 * 17 * 257 * 1531 7602256605 = 3 * 5 * 17 * 257 * 311 * 373 9055691835 = 3 * 5 * 17 * 257 * 138181 9217432215 = 3^2 * 5 * 17 * 173 * 257 * 271
Links
- Giovanni Resta, Table of n, a(n) for n = 1..233 (terms < 10^12)
- Roger Crocker, "On the sum of a prime and of two powers of two", Pacific Journal of Mathematics 36:1 (1971), pp. 103-107.
- Roger Crocker, Some counter-examples in the additive theory of numbers, Master's thesis (Ohio State University), 1962.
- Hao Pan, On the integers not of the form p + 2^a + 2^b. arXiv:0905.3809 [math.NT], 2009.
- Zhi-Wei Sun, Mixed sums of primes and other terms (2009-2010).
Programs
-
PARI
is(n)=if(n%2==0,return(0)); for(a=1,log(n)\log(2), for(b=1,a, if(isprime(n-2^a-2^b),return(0)))); 1 \\ Charles R Greathouse IV, Nov 27 2013
-
Python
from itertools import count, islice from sympy import isprime def A156695_gen(startvalue=1): # generator of terms >= startvalue for n in count(max(startvalue+(startvalue&1^1),1),2): l = n.bit_length()-1 for a in range(l,0,-1): c = n-(1<A156695_list = list(islice(A156695_gen(),4)) # Chai Wah Wu, Nov 29 2023
Extensions
Factorizations added by Daniel Forgues, Jan 20 2011
Comments