A006285 Odd numbers not of form p + 2^k (de Polignac numbers).
Examples
127 is in the sequence since 127 - 2^0 = 126, 127 - 2^1 = 125, 127 - 2^2 = 123, 127 - 2^3 = 119, 127 - 2^4 = 111, 127 - 2^5 = 95, and 127 - 2^6 = 63 are all composite. - _Michael B. Porter_, Aug 29 2016
References
- Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See p. 226.
- R. K. Guy, Unsolved Problems in Number Theory, Springer, 1st edition, 1981. See section F13.
- Clifford A. Pickover, A Passion for Mathematics, John Wiley & Sons, Inc., NJ, 2005, pp. 62 & 300.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- J. G. Van Der Corput, On de Polignac's conjecture, Simon Stevin, Vol. 27 (1950), pp. 99-105.
- David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, see #127.
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- Thomas Bloom, Is the set of odd integers not of the form 2^k+p the union of an infinite arithmetic progression and a set of density 0?, Erdős Problems.
- Yuda Chen, Xiangjun Dai, and Huixi Li, Some results on a conjecture of de Polignac about numbers of the form p + 2^k, arXiv preprint (2024). arXiv:2402.06644 [math.NT]
- Yong-Gao Chen and Xue-Gong Sun, On Romanoff's constant, Journal of Number Theory, Vol. 106, No. 2 (2004), pp. 275-284.
- Roger Crocker, A theorem concerning prime numbers, Mathematics Magazine, Vol. 34, No. 6 (1961), pp. 316-344.
- Yuchen Ding, On a problem of Romanoff type, arXiv:2201.12783 [math.NT], 2022.
- Christian Elsholtz and Jan-Christoph Schlage-Puchta, On Romanov's constant, Mathematische Zeitschrift, Vol. 288 (2018), pp. 713-724; alternative link.
- Paul Erdős, On integers of the form 2^k + p and some related problems, Summa Brasil. Math., Vol. 2 (1950), p. 113-125.
- Laurent Habsieger and Xavier-François Roblot, On integers of the form p+2^k, Acta Arithmetica, Vol. 122, No. 1 (2006), pp. 45-50.
- Laurent Habsieger and Jimena Sivak-Fischler, An effective version of the Bombieri-Vinogradov theorem, and applications to Chen's theorem and to sums of primes and powers of two, Archiv der Mathematik, Vol. 95, No. 6 (2010), pp. 557-566.
- Guang-Shi Lü, On Romanoff's constant and its generalized problem, Chinese Advances in Mathematics, Vol. 36, No. 1 (2007), pp. 94-100.
- János Pintz, A note on Romanov's constant, Acta Mathematica Hungarica, Vol. 112, No. 1-2 (2006), pp. 1-14.
- Paul Pollack, Not Always Buried Deep: A Second Course in Elementary Number Theory, AMS, 2009, p. 201, exercise 34.
- Carl Pomerance, Erdős, van der Corput, and the birth of covering congruences, Joint Mathematics Meetings, Special Session on Covering Congruences, San Diego, CA, January, 2013.
- F. Romani, Computations concerning primes and powers of two, Calcolo, Vol. 20 (1983), pp. 319-336.
- Nikolai Pavlovich Romanoff, Über einige Sätze der additiven Zahlentheorie, Math. Ann., Vol. 109 (1934), pp. 668-678.
- Terence Tao, Erdős problem database, see entry no. 16.
- Wikipedia, Romanov's theorem.
Crossrefs
Programs
-
Haskell
a006285 n = a006285_list !! (n-1) a006285_list = filter ((== 0) . a109925) [1, 3 ..] -- Reinhard Zumkeller, May 27 2015
-
Magma
lst:=[]; for n in [1..1973 by 2] do x:=-1; repeat x+:=1; a:=n-2^x; until a lt 1 or IsPrime(a); if a lt 1 then Append(~lst, n); end if; end for; lst; // Arkadiusz Wesolowski, Aug 29 2016
-
Maple
N:= 10000: # to get all terms <= N P:= select(isprime, {2,seq(i,i=3..N,2)}): T:= {seq(2^i,i=0..ilog2(N))}: R:= {seq(i,i=1..N,2)} minus {seq(seq(p+t,p=P),t=T)}: sort(convert(R,list)); # Robert Israel, Sep 23 2016
-
Mathematica
Do[ i = 0; l = Ceiling[ N[ Log[ 2, n ] ] ]; While[ ! PrimeQ[ n - 2^i ] && i < l, i++ ]; If[ i == l, Print[ n ] ], {n, 1, 2000, 2} ] Join[{1},Select[Range[5,1999,2],!MemberQ[PrimeQ[#-2^Range[Floor[ Log[ 2,#]]]], True]&]] (* Harvey P. Dale, Jul 22 2011 *)
-
PARI
isA006285(n,i=1)={ bittest(n,0) && until( isprime(n-i) || nn } \\ M. F. Hasler, Jun 19 2008, updated Apr 12 2017
-
Python
from itertools import count, islice from sympy import isprime def A006285_gen(startvalue=1): # generator of terms return filter(lambda n: not any(isprime(n-(1<A006285_list = list(islice(A006285_gen(),30)) # Chai Wah Wu, Nov 29 2023
Comments