A232991 Period 6: repeat [1, 0, 0, 0, 1, 0].
1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1
Offset: 0
References
- Andrews, George E., q-series: their development and application in analysis, number theory, combinatorics, physics, and computer algebra. CBMS Regional Conference Series in Mathematics, 66. Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1986. xii+130 pp. ISBN: 0-8218-0716-1 MR0858826 (88b:11063). See p. 105.
Links
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,0,0,1).
Programs
-
Haskell
a232991 = (0 ^) . subtract 1 . gcd 6 . (+ 1) a232991_list = cycle [1,0,0,0,1,0] -- Reinhard Zumkeller, Apr 06 2015
-
Magma
/* By definition: */ &cat [[1,0,0,0,1,0]: n in [0..20]]; // Bruno Berselli, Feb 18 2015
-
Magma
[(((n+3) mod 6) mod 5) mod 2: n in [0..100]]; // Vincenzo Librandi, Feb 18 2015
-
Maple
A232991:=n->ceil((n+4)/6) - floor((n+4)/6) - (n mod 2): seq(A232991(n), n=0..100); # Wesley Ivan Hurt, Mar 13 2014
-
Mathematica
Table[Ceiling[(n + 4)/6] - Floor[(n + 4)/6] - Mod[n, 2], {n, 0, 100}] (* Wesley Ivan Hurt, Mar 13 2014 *) Table[Cos[Pi*n/2]/3 * (Cos[Pi*n/6] + 2*Cos[Pi*n/2] + Sqrt[3]*Sin[Pi*n/6]), {n, 0, 100}] (* Vaclav Kotesovec, Mar 23 2014 *)
-
PARI
a(n)=(n+9)\6 - (n+4)\6 - n%2 \\ Charles R Greathouse IV, Jul 17 2016
-
Python
def A232991(n): return int(not (n+1) % 6 & 3 ^ 1) # Chai Wah Wu, May 25 2022
Formula
a(n) = ceiling((n + 4)/6) - floor((n + 4)/6) - (n mod 2). - Wesley Ivan Hurt, Mar 13 2014
a(n) = cos(Pi*n/2)/3*(cos(Pi*n/6) + 2*cos(Pi*n/2) + sqrt(3)*sin(Pi*n/6)). - Vaclav Kotesovec, Mar 23 2014
G.f.: (1 + x^4)/(1 - x^6). - Bruno Berselli, Feb 18 2015
a(n) = if gcd(n+1, 6) > 1 then 0, otherwise 1. - Reinhard Zumkeller, Apr 06 2015
a(n) = a(n-6) for n > 5. - Wesley Ivan Hurt, Jun 20 2016
E.g.f.: (2*cosh(x) - sqrt(3)*sin(sqrt(3)*x/2)*sinh(x/2) + cos(sqrt(3)*x/2)*cosh(x/2))/3. - Ilya Gutkovskiy, Jun 21 2016
a(n) = gcd(gcd(floor((n+2)/3), 2), n) - 1. - Lechoslaw Ratajczak, Jul 30 2021
a(n) = sign((n+1) mod ((5+(-1)^n)/2)). - Wesley Ivan Hurt, Feb 04 2022