A268303 Composite numbers n such that Sum_{k = 0..n} (-1)^k * C(n,k) * C(2*n,k) == -1 (mod n^3) (see A234839).
10, 25, 146, 586, 2186, 2386, 2594, 2642, 4162, 4226, 4258, 5186, 7745, 8258, 8354, 8458, 8714, 8746, 8842, 10306, 10378, 10786, 10826, 10834, 10898, 16418, 16546, 16706, 17026, 17674, 20546, 20642, 20738, 32834, 32906, 33322, 33505, 33802, 34058, 35338
Offset: 1
Keywords
Links
- Marc Chamberland and Karl Dilcher, A Binomial Sum Related to Wolstenholme's Theorem, J. Number Theory, Vol. 171, Issue 11 (Nov. 2009), pp. 2659-2672. See Table 1 p. 2666.
Crossrefs
Cf. A234839.
Programs
-
PARI
isok(n) = Mod(sum(k=0, n, (-1)^k*binomial(n,k)*binomial(2*n,k)), n^3) == Mod(-1, n^3); lista(nn) = forcomposite(n=2, nn, if (isok(n), print1(n, ", ")));
Comments