cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A235988 Sum of the partition parts of 3n into 3 parts.

Original entry on oeis.org

3, 18, 63, 144, 285, 486, 777, 1152, 1647, 2250, 3003, 3888, 4953, 6174, 7605, 9216, 11067, 13122, 15447, 18000, 20853, 23958, 27393, 31104, 35175, 39546, 44307, 49392, 54897, 60750, 67053, 73728, 80883, 88434, 96495, 104976, 113997, 123462, 133497, 144000
Offset: 1

Views

Author

Wesley Ivan Hurt, Jan 17 2014

Keywords

Examples

			a(2) = 18; 3(2) = 6 has 3 partitions into 3 parts: (4, 1, 1), (3, 2, 1), and (2, 2, 2). The sum of the parts is 18.
Figure 1: The partitions of 3n into 3 parts for n = 1, 2, 3, ...
                                               13 + 1 + 1
                                               12 + 2 + 1
                                               11 + 3 + 1
                                               10 + 4 + 1
                                                9 + 5 + 1
                                                8 + 6 + 1
                                                7 + 7 + 1
                                   10 + 1 + 1  11 + 2 + 2
                                    9 + 2 + 1  10 + 3 + 2
                                    8 + 3 + 1   9 + 4 + 2
                                    7 + 4 + 1   8 + 5 + 2
                                    6 + 5 + 1   7 + 6 + 2
                        7 + 1 + 1   8 + 2 + 2   9 + 3 + 3
                        6 + 2 + 1   7 + 3 + 2   8 + 4 + 3
                        5 + 3 + 1   6 + 4 + 2   7 + 5 + 3
                        4 + 4 + 1   5 + 5 + 2   6 + 6 + 3
            4 + 1 + 1   5 + 2 + 2   6 + 3 + 3   7 + 4 + 4
            3 + 2 + 1   4 + 3 + 2   5 + 4 + 3   6 + 5 + 4
1 + 1 + 1   2 + 2 + 2   3 + 3 + 3   4 + 4 + 4   5 + 5 + 5
   3(1)        3(2)        3(3)        3(4)        3(5)     ..    3n
------------------------------------------------------------------------
    3           18          63         144         285      ..   a(n)
- _Wesley Ivan Hurt_, Sep 07 2019
		

Crossrefs

Programs

  • Magma
    [3*n^3-3*n*Floor(n^2/4): n in [1..100]]; // Wesley Ivan Hurt, Nov 01 2015
    
  • Magma
    [3*n*(1-(-1)^n+6*n^2)/8: n in [1..40]]; // Vincenzo Librandi, Nov 18 2015
  • Maple
    A235988:=n->3*n^3 - 3*n*floor(n^2/4); seq(A235988(n), n=1..100);
  • Mathematica
    Table[3 n^3 - 3 n*Floor[n^2/4], {n, 100}] (* or *) CoefficientList[ Series[3*x*(x^4 + 4*x^3 + 8*x^2 + 4*x + 1)/((x - 1)^4*(x + 1)^2), {x, 0, 30}], x]
    LinearRecurrence[{2,1,-4,1,2,-1},{3,18,63,144,285,486},40] (* Harvey P. Dale, May 17 2018 *)
  • PARI
    a(n)=3*n^3 - n^2\4*3*n \\ Charles R Greathouse IV, Oct 07 2015
    
  • PARI
    x='x+O('x^50); Vec(3*x*(x^4+4*x^3+8*x^2+4*x+1)/((x-1)^4*(x+1)^2)) \\ Altug Alkan, Nov 01 2015
    

Formula

a(n) = 3*n^3 - 3*n*floor(n^2/4).
a(n) = 3n * A077043(n).
a(n) = a(n-1) + 3*A077043(n-1) + A001651(n) + A093353(3n-2).
From Colin Barker, Jan 18 2014: (Start)
a(n) = (3*n*(1-(-1)^n+6*n^2))/8.
G.f.: 3*x*(x^4+4*x^3+8*x^2+4*x+1) / ((x-1)^4*(x+1)^2). (End)
a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a(n-6) for n > 6. - Wesley Ivan Hurt, Nov 15 2015
E.g.f.: 3*x*((4 + 9*x + 3*x^2)*cosh(x) + 3*(1 + 3*x + x^2)*sinh(x))/4. - Stefano Spezia, Feb 09 2023

Extensions

a(165) in b-file corrected by Andrew Howroyd, Feb 21 2018