A235998
Triangle read by rows: T(n,k) is the number of compositions of n having k distinct parts (n>=1, 1<=k<=floor((sqrt(1+8*n)-1)/2)).
Original entry on oeis.org
1, 2, 2, 2, 3, 5, 2, 14, 4, 22, 6, 2, 44, 18, 4, 68, 56, 3, 107, 146, 4, 172, 312, 24, 2, 261, 677, 84, 6, 396, 1358, 288, 2, 606, 2666, 822, 4, 950, 5012, 2226, 4, 1414, 9542, 5304, 120, 5, 2238, 17531, 12514, 480, 2, 3418, 32412, 27904, 1800, 6, 5411, 58995, 61080, 5580
Offset: 1
Triangle begins:
1;
2;
2, 2;
3, 5;
2, 14;
4, 22, 6;
2, 44, 18;
4, 68, 56;
3, 107, 146;
4, 172, 312, 24;
2, 261, 677, 84;
6, 396, 1358, 288;
2, 606, 2666, 822;
4, 950, 5012, 2226;
4, 1414, 9542, 5304, 120;
5, 2238, 17531, 12514, 480;
2, 3418, 32412, 27904, 1800;
6, 5411, 58995, 61080, 5580;
...
-
b:= proc(n, i, p) option remember; `if`(n=0, p!, `if`(i<1, 0,
expand(add(b(n-i*j, i-1, p+j)/j!*`if`(j=0, 1, x), j=0..n/i))))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=1..degree(p)))(b(n$2, 0)):
seq(T(n), n=1..25); # Alois P. Heinz, Jan 20 2014, revised May 25 2014
-
b[n_, i_, p_] := b[n, i, p] = If[n==0, p!, If[i<1, 0, Sum[b[n-i*j, i-1, p+ j]/j!*If[j==0, 1, x], {j, 0, n/i}]]]; T[n_] := Function[p, Table[ Coefficient[p, x, i], {i, 1, Exponent[p, x]}]][b[n, n, 0]]; Table[T[n], {n, 1, 25}] // Flatten (* Jean-François Alcover, Dec 10 2015, after Alois P. Heinz *)
A235999
Triangle read by rows: T(n,k) = 2^k*A235998(n,k), n>=1, k>=1.
Original entry on oeis.org
2, 4, 4, 8, 6, 20, 4, 56, 8, 88, 48, 4, 176, 144, 8, 272, 448, 6, 428, 1168, 8, 688, 2496, 384, 4, 1044, 5416, 1344, 12, 1584, 10864, 4608, 4, 2424, 21328, 13152, 8, 3800, 40096, 35616, 8, 5656, 76336, 84864, 3840, 10, 8952, 140248, 200224, 15360
Offset: 1
Triangle begins:
2;
4;
4, 8;
6, 20;
4, 56;
8, 88, 48;
4, 176, 144;
8, 272, 448;
6, 428, 1168;
8, 688, 2496, 384;
4, 1044, 5416, 1344;
12, 1584, 10864, 4608;
4, 2424, 21328, 13152;
8, 3800, 40096, 35616;
8, 5656, 76336, 84864, 3840;
10, 8952, 140248, 200224, 15360;
...
A236633
Number of overcompositions of n minus the number of compositions of n.
Original entry on oeis.org
0, 1, 2, 8, 18, 44, 112, 260, 600, 1346, 3064, 6784, 15020, 32812, 71328, 154320, 332026, 711500, 1518384, 3229044, 6843256, 14464760, 30487496, 64112960, 134515472, 281671698, 588680628, 1228211140, 2558366188, 5321151540, 11052034932, 22925310868
Offset: 0
For n = 3 the number of overcompositions of 3 is A236002(3) = 12 and the number of compositions of 3 is A011782(3) = 4, so a(3) = 12 - 4 = 8.
On the other hand, the 12 overcompositions of 3 are [3], [3'], [1, 2], [1', 2], [1, 2'], [1', 2'], [2, 1], [2', 1], [2, 1'], [2', 1'], [1, 1, 1], [1', 1, 1]. There are 8 overcompositions with at least one overlined part, so a(3) = 8.
A236625
Total number of parts in all overcompositions of n.
Original entry on oeis.org
0, 2, 6, 24, 66, 180, 496, 1272, 3202, 7798, 18980, 45076, 106288, 246956, 568776, 1299184, 2944654, 6630660, 14838606, 33026000, 73126376, 161198136, 353812612, 773645124, 1685548792, 3660364490, 7924414752, 17107225340, 36832846344, 79107019964, 169505684844
Offset: 0
For n = 3 the 12 overcompositions of 3 are [3], [3'], [1, 2], [1', 2], [1, 2'], [1', 2'], [2, 1], [2', 1], [2, 1'], [2', 1'], [1, 1, 1], [1', 1, 1]. There are 24 parts, so a(3) = 24.
-
b:= proc(n, i, p) option remember; `if`(n=0, [p!, 0],
`if`(i<1, 0, add((p-> p+[0, p[1]*j])(1/j!*
`if`(j>0, 2, 1)*b(n-i*j, i-1, p+j)), j=0..n/i)))
end:
a:= n-> b(n$2, 0)[2]:
seq(a(n), n=0..35); # Alois P. Heinz, Apr 28 2016
-
b[n_, i_, p_] := b[n, i, p] = If[n == 0, {p!, 0}, If[i < 1, {0, 0}, Sum[# + {0, #[[1]]*j}&[1/j!*If[j > 0, 2, 1]*b[n - i*j, i - 1, p + j]], {j, 0, n/i}]]];
a[n_] := b[n, n, 0][[2]];
Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Nov 03 2022, after Alois P. Heinz *)
A237044
Number of overcompositions of n minus the number of partitions of n.
Original entry on oeis.org
0, 1, 2, 9, 21, 53, 133, 309, 706, 1572, 3534, 7752, 16991, 36807, 79385, 170528, 364563, 776739, 1649071, 3490698, 7366917, 15512544, 32583646, 68306009, 142902505, 298446956, 622232624, 1295316994, 2692580198, 5589582431, 11588900240, 23999045850
Offset: 0
A237045
Number of overcompositions of n minus the number of overpartitions of n.
Original entry on oeis.org
0, 0, 0, 4, 12, 36, 104, 260, 628, 1448, 3344, 7464, 16564, 36180, 78480, 169232, 362732, 774172, 1645508, 3485788, 7360208, 15503432, 32571360, 68289536, 142880552, 298417848, 622194236, 1295266596, 2692514348, 5589496748, 11588789220, 23998902548
Offset: 0
Illustration of a(4) = -6 with both overcompositions and overpartitions in colexicographic order.
--------------------------------------------------------
. Overcompositions of 4 Overpartitions of 4
--------------------------------------------------------
. _ _ _ _ _ _ _ _
1 |.| | | | 1', 1, 1, 1 |.| | | | 1', 1, 1, 1
2 |_| | | | 1, 1, 1, 1 |_| | | | 1, 1, 1, 1
3 | .|.| | 2', 1', 1 | .|.| | 2', 1', 1
4 | |.| | 2, 1', 1 | |.| | 2, 1', 1
5 | .| | | 2', 1, 1 | .| | | 2', 1, 1
6 |_ _| | | 2, 1, 1 |_ _| | | 2, 1, 1
7 *|.| .| | 1', 2', 1 | .|.| 3', 1
8 *| | .| | 1, 2', 1 | |.| 3, 1
9 *|.| | | 1', 2, 1 | .| | 3', 1
10 *|_| | | 1, 2, 1 |_ _ _| | 3, 1
11 | .|.| 3', 1' | .| | 2', 2
12 | |.| 3, 1' |_ _| | 2, 2
13 | .| | 3', 1 | .| 4'
14 |_ _ _| | 3, 1 |_ _ _ _| 4
15 *|.| | .| 1', 1, 2'
16 *| | | .| 1, 1, 2'
17 *|.| | | 1', 1, 2
18 *|_| | | 1, 1, 2
19 | .| | 2', 2
20 |_ _| | 2, 2
21 *|.| .| 1', 3'
22 *| | .| 1, 3'
23 *|.| | 1', 3
24 *|_| | 1, 3
25 | .| 4'
26 |_ _ _ _| 4
.
There are 26 overcompositions of 4 and there are 14 overpartitions of 4, so the difference is a(4) = 26 - 14 = 12.
On the other hand there are 12 overcompositions of 4 that contain at least two parts in increasing order, so a(4) = 12.
A228820
Sum of positive F-ranks of all compositions of n. Also, sum of positive L-ranks of all compositions of n (see comments lines for definition).
Original entry on oeis.org
0, 0, 1, 3, 9, 24, 60, 145, 342, 791, 1800, 4041, 8971, 19733, 43077, 93441, 201592, 432867, 925574, 1971633, 4185537, 8857634, 18691421, 39339638, 82599634, 173050951, 361825484, 755140789, 1573359111, 3273103135, 6799507189, 14106802811, 29231731788
Offset: 0
Table 1. Compositions of 4 in lexicographic order.
---------------------------------------------------------
j Composition Diagram F-rank L-rank
---------------------------------------------------------
. _ _ _ _
1 [1,1,1,1] | | | |_| 1 - 4 = -3 1 - 4 = -3
2 [1,1,2] | | |_ _| 1 - 3 = -2 2 - 3 = -1
3 [1,2,1] | | |_| 1 - 3 = -2 1 - 3 = -2
4 [1,3] | |_ _ _| 1 - 2 = -1 4 - 2 = 2
5 [2,1,1] | | |_| 2 - 3 = -1 1 - 3 = -2
6 [2,2] | |_ _| 2 - 2 = 0 2 - 2 = 0
7 [3,1] | |_| 4 - 2 = 2 1 - 2 = -1
8 [4] |_ _ _ _| 8 - 1 = 7 8 - 1 = 7
--- ---
Total sum: 0 0
Sum of positive terms: 9 9
.
Table 2. Compositions of 4 in colexicographic order.
---------------------------------------------------------
j Composition Diagram F-rank L-rank
---------------------------------------------------------
. _ _ _ _
1 [1,1,1,1] |_| | | | 1 - 4 = -3 1 - 4 = -3
2 [2,1,1] |_ _| | | 2 - 3 = -1 1 - 3 = -2
3 [1,2,1] |_| | | 1 - 3 = -2 1 - 3 = -2
4 [3,1] |_ _ _| | 4 - 2 = 2 1 - 2 = -1
5 [1,1,2] |_| | | 1 - 3 = -2 2 - 3 = -1
6 [2,2] |_ _| | 2 - 2 = 0 2 - 2 = 0
7 [1,3] |_| | 1 - 2 = -1 4 - 2 = 2
8 [4] |_ _ _ _| 8 - 1 = 7 8 - 1 = 7
--- ---
Total sum: 0 0
Sum of positive terms: 9 9
.
The sum of positive F-ranks of all compositions of 4 is 2+7 = 9, the same as the sum of positive L-ranks, so a(4) = 9.
-
a:= n-> add(add(binomial(n-k-1, i-2)*(2^(k-1)-i),
i=1..min(2^(k-1)-1, n-k+1)), k=1..n):
seq(a(n), n=0..50); # Alois P. Heinz, Sep 09 2013
-
a[n_] := Sum[Sum[Binomial[n-k-1, i-2]*(2^(k-1)-i), {i, 1, Min[2^(k-1) - 1, n - k + 1]}], {k, 1, n}]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Feb 21 2017, after Alois P. Heinz *)
A236626
Sum of all parts of all overcompositions of n.
Original entry on oeis.org
2, 8, 36, 104, 300, 864, 2268, 5824, 14418, 35760, 85888, 204816, 479804, 1113280, 2560560, 5836704, 13209612, 29690208, 66332572, 147350880, 325780056, 716862256, 1571067072, 3429697920, 7461222850, 16178111560, 34973640108, 75392349648
Offset: 1
For n = 3 the 12 overcompositions of 3 are [3], [3'], [1, 2], [1', 2], [1, 2'], [1', 2'], [2, 1], [2', 1], [2, 1'], [2', 1'], [1, 1, 1], [1', 1, 1], hence the sum of all parts is 3+3+1+2+1+2+1+2+1+2+2+1+2+1+2+1+2+1+1+1+1+1+1+1 = 3*12 = 36, so a(3) = 36.
A236628
Triangle read by rows in which T(n,k) is the number of parts in the k-th region of the set of overcompositions of n, with overcompositions in colexicographic order.
Original entry on oeis.org
2, 2, 4, 2, 6, 4, 12, 2, 6, 4, 14, 4, 6, 4, 26
Offset: 1
Written as an irregular triangle in which row n has length 2^n the sequence begins:
2;
2, 4;
2, 6, 4, 12;
2, 6, 4, 14, 4, 6, 4, 26;
...
For n = 3 the diagram shows the four regions of the overcompositions of 3, with overcompositions in colexicographic order.
------------------------------------------------
. Diagram of Regions of the diagram
overcompositions ------------------------
. of 3 k: 1 2 3 4
------------------------------------------------
. _ _ _ _ _ _
1 |.| | | |.| | | | |
2 |_| | | |_| _| | | |
3 | .|.| | .| |.|
4 | |.| | | |.|
5 | .| | | .| | |
6 |_ _| | |_ _| _ _| |
7 |.| .| |.| | .|
8 | | .| | | | .|
9 |.| | |.| | |
10 |_| | |_| _| |
11 | .| | .|
12 |_ _ _| |_ _ _|
...
Number of parts.........: 2 6 4 12
.
Every row of every region contains only one part.
A237272
Number of overcompositions of n that contain at least two parts in increasing order and that contain at least one overlined part.
Original entry on oeis.org
0, 0, 0, 3, 9, 27, 83, 211, 522, 1222, 2874, 6496, 14593, 32185, 70423, 153024, 330195, 708933, 1514821, 3224134, 6836547, 14455648, 30475210, 64096487, 134493519, 281642590, 588642240, 1228160742, 2558300338, 5321065857, 11051923912, 22925167566
Offset: 0
Showing 1-10 of 13 results.
Comments