A236194 a(n) = binomial(3n+1, n-1).
1, 7, 45, 286, 1820, 11628, 74613, 480700, 3108105, 20160075, 131128140, 854992152, 5586853480, 36576848168, 239877544005, 1575580702584, 10363194502115, 68248282427325, 449972009097765, 2969831763694950, 19619725782651120, 129728497393775280
Offset: 1
Links
- Bruno Berselli, Table of n, a(n) for n = 1..100
- Emanuele Munarini, Shifting Property for Riordan, Sheffer and Connection Constants Matrices, Journal of Integer Sequences, Vol. 20 (2017), Article 17.8.2.
Crossrefs
Programs
-
Magma
[Binomial(3*n+1,n-1): n in [1..30]];
-
Mathematica
Table[Binomial[3n+1, n-1], {n, 30}]
-
Maxima
makelist(binomial(3*n+4,n),n,0,40); /* Emanuele Munarini, Oct 14 2014 */
-
PARI
vector(30, n, binomial(3*n+1, n-1)) \\ Altug Alkan, Nov 04 2015
-
SageMath
[binomial(3*n+1,n-1) for n in range(1,31)] # G. C. Greubel, Nov 09 2022
Formula
G.f.: (sqrt(4-27*x)*cos((2/3)*arcsin((3/2)*sqrt(3*x))) + sqrt(3*x)*sin((2/3)*arcsin((3/2)*sqrt(3*x))) - sqrt(4-27*x))/(3*sqrt(4-27*x)*x^2). - Emanuele Munarini, Oct 14 2014
From Peter Bala, Nov 04 2015: (Start)
With offset 0, the o.g.f. equals f(x)*g(x)^4, where f(x) is the o.g.f. for A005809 and g(x) is the o.g.f. for A001764.
More generally, f(x)*g(x)^k is the o.g.f. for the sequence binomial(3*n + k,n). Cf. A045721 (k = 1), A025174 (k = 2), A004319 (k = 3), A013698 (k = 5), A165817 (k = -1), A117671 (k = -2). (End)
a(n) = [x^n] x/(1 - x)^(2*n+3). - Ilya Gutkovskiy, Oct 10 2017
From Karol A. Penson, Mar 02 2024: (Start)
G.f.: ((sqrt(3)*sqrt(x)*i + sqrt(4 - 27*x))*(4*sqrt(4 - 27*x) - 12*i*sqrt(3)*sqrt(x))^(2/3) + (-sqrt(3)*sqrt(x)*i + sqrt(4 - 27*x))*(4*sqrt(4 - 27*x) + 12*i*sqrt(3)*sqrt(x))^(2/3) - 8*sqrt(4 - 27*x))/(24*sqrt(4 - 27*x)*x^2), where i is the imaginary unit, i=sqrt(-1).
G.f.: hypergeometric3F2([5/3,2,7/3],[5/2,3],27*x/4).
G.f. = G satisfies the algebraic equation: 1 + (7*z-1)*G + (27*z-4)*z^2*G^2 + (27*z-4)*z^4*G^3 = 0. (End)
Comments