cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A225324 Partition numbers of the form 4k.

Original entry on oeis.org

56, 176, 792, 2436, 5604, 451276, 715220, 831820, 1300156, 2323520, 4087968, 7089500, 8118264, 12132164, 15796476, 26543660, 92669720, 118114304, 150198136, 190569292, 384276336, 483502844, 541946240, 761002156, 851376628, 1188908248, 1327710076, 1844349560
Offset: 1

Views

Author

Omar E. Pol, May 05 2013

Keywords

Comments

Intersection of A008586 and A000041.

Examples

			56 is in the sequence because 4*14 = 56 and 56 is a partition number: p(11) = A000041(11) = 56.
		

Crossrefs

Programs

  • Mathematica
    Select[PartitionsP[Range[300]], Mod[#, 4] == 0 &] (* T. D. Noe, May 05 2013 *)
  • PARI
    for(n=9, 1e3, t=numbpart(n); if(t%4, , print1(t", "))) \\ Charles R Greathouse IV, May 08 2013

Formula

a(n) = 4*A216258(n). - Omar E. Pol, May 08 2013
a(n) = A000041(A237278(n)). - Amiram Eldar, May 22 2025

Extensions

a(6)-a(28) from T. D. Noe, May 05 2013

A243935 Numbers m such that 5 divides A000041(m).

Original entry on oeis.org

4, 7, 9, 14, 18, 19, 23, 24, 27, 29, 34, 38, 39, 44, 49, 54, 58, 59, 61, 64, 66, 68, 69, 71, 74, 79, 82, 84, 89, 94, 97, 99, 103, 104, 109, 114, 119, 120, 124, 127, 128, 129, 130, 134, 136, 139, 140, 142, 144, 149, 154, 159, 163, 164, 165, 169, 170, 173, 174
Offset: 1

Views

Author

Bruno Berselli, Jun 15 2014

Keywords

Crossrefs

Numbers m such that k divides A000041(m), where k is prime: A001560 (k=2), A083214 (k=3), this sequence (k=5), A243936 (k=7), A027827 (k=11), A071750 (k=13). For k composite: A237278 (k=4), A035700 (k=12).

Programs

  • Magma
    [n: n in [1..200] | IsZero(NumberOfPartitions(n) mod 5)];
    
  • Mathematica
    Select[Range[200], Mod[PartitionsP[#], 5] == 0 &]
  • PARI
    is(n)=numbpart(n)%5==0 \\ Charles R Greathouse IV, Apr 08 2015
  • Sage
    # From Peter Luschny in A000041
    @CachedFunction
    def A000041(n):
        if n == 0: return 1
        S = 0; J = n-1; k = 2
        while 0 <= J:
            T = A000041(J)
            S = S+T if is_odd(k//2) else S-T
            J -= k if is_odd(k) else k//2
            k += 1
        return S
    [n for n in (0..200) if mod(A000041(n),5) == 0]
    

A237276 Numbers k such that A000041(k) == 1 (mod 3).

Original entry on oeis.org

0, 1, 5, 8, 18, 19, 23, 27, 28, 34, 36, 37, 44, 45, 50, 54, 55, 59, 62, 64, 72, 73, 77, 81, 82, 86, 89, 91, 95, 98, 99, 100, 110, 112, 113, 116, 117, 118, 119, 122, 128, 134, 137, 139, 140, 143, 146, 148, 149, 150, 152, 154, 155, 157, 158, 161, 166, 168, 170
Offset: 1

Views

Author

Clark Kimberling, Feb 05 2014

Keywords

Comments

The set of positive integers is partitioned by A083214, A237276, and A237277.

Examples

			A000041(8) = 22 == 1 (mod 3).
		

Crossrefs

Programs

  • Mathematica
    f[n_, k_] := Select[Range[0, 250], Mod[PartitionsP[#], n] == k &]
    Table[f[3, k], {k, 0, 2}] (* A083214, A237276, A237277 *)
    Table[f[4, k], {k, 0, 3}] (* A237278-A237281 *)

Extensions

a(1)=0 inserted by Amiram Eldar, May 22 2025

A237280 Numbers k such that A000041(k) == 2 (mod 4).

Original entry on oeis.org

2, 8, 9, 10, 19, 22, 25, 27, 28, 31, 34, 40, 42, 45, 46, 47, 50, 57, 64, 65, 79, 86, 97, 101, 103, 110, 129, 147, 151, 158, 160, 163, 167, 170, 174, 175, 176, 184, 197, 198, 207, 213, 217, 224, 227, 228, 241, 245, 246, 247
Offset: 1

Views

Author

Clark Kimberling, Feb 05 2014

Keywords

Comments

The set of positive integers is partitioned by the sequences A237278-A237281.

Examples

			A000041(8) = 22 == 2 (mod 4).
		

Crossrefs

Programs

  • Mathematica
    f[n_, k_] := Select[Range[250], Mod[PartitionsP[#], n] == k &]
    Table[f[4, k], {k, 0, 3}] (* A237278-A237281 *)

A237281 Numbers k such that A000041(k) == 3 (mod 4).

Original entry on oeis.org

3, 5, 6, 7, 14, 16, 20, 23, 24, 33, 35, 38, 41, 44, 51, 53, 54, 56, 60, 63, 68, 72, 76, 77, 81, 82, 91, 92, 95, 99, 102, 111, 115, 118, 121, 127, 134, 138, 139, 140, 146, 156, 159, 161, 164, 165, 166, 168, 169, 173, 177, 178, 182, 183, 188, 192, 196, 201
Offset: 1

Views

Author

Clark Kimberling, Feb 05 2014

Keywords

Comments

The set of positive integers is partitioned by the sequences A237278-A237281.

Examples

			A000041(6) = 11 == 3 (mod 4).
		

Crossrefs

Programs

  • Mathematica
    f[n_, k_] := Select[Range[250], Mod[PartitionsP[#], n] == k &]
    Table[f[4, k], {k, 0, 3}] (* A237278-A237281 *)

A121062 Partition numbers mod 4.

Original entry on oeis.org

1, 1, 2, 3, 1, 3, 3, 3, 2, 2, 2, 0, 1, 1, 3, 0, 3, 1, 1, 2, 3, 0, 2, 3, 3, 2, 0, 2, 2, 1, 0, 2, 1, 3, 2, 3, 1, 1, 3, 1, 2, 3, 2, 1, 3, 2, 2, 2, 1, 1, 2, 3, 1, 3, 3, 0, 3, 2, 0, 0, 3, 1, 0, 3, 2, 2, 0, 1, 3, 1, 0, 1, 3, 1, 0, 0, 3, 3, 0, 2, 0, 3, 3, 1, 0, 1, 2, 1, 1, 1, 1, 3, 3, 1, 0, 3, 0, 2, 0, 3, 0, 2, 3, 2, 1
Offset: 0

Views

Author

Jonathan Vos Post, Aug 10 2006

Keywords

Comments

P_n==0: 11, 15, 21, 26, 30, 55, 58, 59, 62, 66, 70, 74, 75, 78, 80, 84, 94, 96, 98, 100, ... A237278.
P_n==1: 0, 1, 4, 12, 13, 17, 18, 29, 32, 36, 37, 39, 43, 48, 49, 52, 61, 67, 69, 71, 73, ... A237279.
P_n==2: 2, 8, 9, 10, 19, 22, 25, 27, 28, 31, 34, 40, 42, 45, 46, 47, 50, 57, 64, 65, 79, ... A237280.
P_n==3: 3, 5, 6, 7, 14, 16, 20, 23, 24, 33, 35, 38, 41, 44, 51, 53, 54, 56, 60, 63, 68, ... A237281.

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
         (b(n, i-1)+b(n-i, min(n-i, i))) mod 4))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..104);  # Alois P. Heinz, Dec 20 2024
  • Mathematica
    f[n_] := Mod[PartitionsP@n, 4]; Table[f@n, {n, 0, 104}] (* Robert G. Wilson v *)
  • PARI
    a(n) = numbpart(n) % 4; \\ Michel Marcus, Jun 29 2016

Formula

a(n) = A000041(n) mod 4 = A010873(A000041(n)).
a(n) = A000025(n) mod 4. - John M. Campbell, Jun 29 2016

Extensions

More terms from Robert G. Wilson v, Aug 17 2006

A237279 Numbers k such that A000041(k) == 1 (mod 4).

Original entry on oeis.org

1, 4, 12, 13, 17, 18, 29, 32, 36, 37, 39, 43, 48, 49, 52, 61, 67, 69, 71, 73, 83, 85, 87, 88, 89, 90, 93, 104, 105, 107, 114, 119, 123, 132, 143, 144, 145, 148, 150, 152, 155, 157, 162, 172, 181, 185, 186, 189, 190, 193, 194, 195, 199, 203, 208, 216, 219
Offset: 1

Views

Author

Clark Kimberling, Feb 05 2014

Keywords

Comments

The set of positive integers is partitioned by the sequences A237278-A237281.

Examples

			A000041(4) = 5 == 1 (mod 4).
		

Crossrefs

Programs

  • Mathematica
    f[n_, k_] := Select[Range[250], Mod[PartitionsP[#], n] == k &]
    Table[f[4, k], {k, 0, 3}] (* A237278-A237281 *)

A237277 Numbers k such that A000041(k) == 2 (mod 3).

Original entry on oeis.org

2, 4, 6, 11, 12, 13, 15, 25, 29, 31, 38, 42, 47, 49, 56, 58, 60, 65, 66, 67, 69, 74, 76, 78, 79, 83, 84, 85, 87, 90, 92, 93, 94, 96, 101, 103, 105, 108, 109, 114, 120, 121, 123, 126, 127, 130, 131, 132, 135, 136, 141, 144, 145, 153, 156, 159, 165, 167, 171
Offset: 1

Views

Author

Clark Kimberling, Feb 05 2014

Keywords

Comments

The set of positive integers is partitioned by A083214, A237276, and A237277.

Examples

			A000041(6) = 11 == 2 (mod 3).
		

Crossrefs

Programs

  • Mathematica
    f[n_, k_] := Select[Range[250], Mod[PartitionsP[#], n] == k &]
    Table[f[3, k], {k, 0, 2}] (* A083214, A237276, A237277 *)
    Table[f[4, k], {k, 0, 3}] (* A237278-A237281 *)

A243936 Numbers m such that 7 divides A000041(m).

Original entry on oeis.org

5, 10, 11, 12, 16, 18, 19, 24, 26, 27, 33, 37, 39, 40, 41, 47, 48, 52, 53, 54, 55, 61, 68, 75, 76, 82, 83, 89, 96, 97, 103, 110, 111, 117, 124, 125, 131, 138, 140, 145, 147, 152, 159, 166, 170, 173, 177, 180, 187, 191, 194, 201, 208, 213, 215, 222, 225, 229, 232
Offset: 1

Views

Author

Bruno Berselli, Jun 15 2014

Keywords

Crossrefs

Numbers m such that k divides A000041(m), where k is prime: A001560 (k=2), A083214 (k=3), A243935 (k=5), this sequence (k=7), A027827 (k=11), A071750 (k=13). For k composite: A237278 (k=4), A035700 (k=12).

Programs

  • Magma
    [n: n in [1..250] | IsZero(NumberOfPartitions(n) mod 7)];
    
  • Mathematica
    Select[Range[250], Mod[PartitionsP[#], 7] == 0 &]
  • PARI
    is(n)=numbpart(n)%7==0 \\ Charles R Greathouse IV, Apr 08 2015
  • Sage
    # From Peter Luschny in A000041
    @CachedFunction
    def A000041(n):
        if n == 0: return 1
        S = 0; J = n-1; k = 2
        while 0 <= J:
            T = A000041(J)
            S = S+T if is_odd(k//2) else S-T
            J -= k if is_odd(k) else k//2
            k += 1
        return S
    [n for n in (0..250) if mod(A000041(n),7) == 0]
    
Showing 1-9 of 9 results.