cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A237278 Numbers k such that A000041(k) == 0 (mod 4).

Original entry on oeis.org

11, 15, 21, 26, 30, 55, 58, 59, 62, 66, 70, 74, 75, 78, 80, 84, 94, 96, 98, 100, 106, 108, 109, 112, 113, 116, 117, 120, 122, 124, 125, 126, 128, 130, 131, 133, 135, 136, 137, 141, 142, 149, 153, 154, 171, 179, 180, 187, 191, 200, 205, 206, 230, 231, 236
Offset: 1

Views

Author

Clark Kimberling, Feb 05 2014

Keywords

Comments

The set of positive integers is partitioned by the sequences A237278-A237281.

Examples

			A000041(11) = 56 == 0 (mod 4).
		

Crossrefs

Cf. A000041, A237276, A237279, A237280, A237281, A243935 (see crossrefs).
Cf. A121062.

Programs

  • Mathematica
    f[n_, k_] := Select[Range[250], Mod[PartitionsP[#], n] == k &]
    Table[f[4, k], {k, 0, 3}] (* A237278-A237281 *)
  • PARI
    is(n)=numbpart(n)%4==0 \\ Charles R Greathouse IV, Apr 08 2015

A278478 a(n) is the 2-adic valuation of A000041(n).

Original entry on oeis.org

0, 0, 1, 0, 0, 0, 0, 0, 1, 1, 1, 3, 0, 0, 0, 4, 0, 0, 0, 1, 0, 3, 1, 0, 0, 1, 2, 1, 1, 0, 2, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0, 2, 0, 1, 2, 2, 0, 0, 2, 0, 1, 1, 6, 0, 0, 0, 5, 0, 0, 0, 2, 3, 0, 0, 2, 1, 2, 0, 0, 0, 2, 0, 1, 0, 0, 0, 0, 0, 0, 0, 3, 0, 11, 1, 3, 0, 2, 1, 0, 1, 0, 0, 4, 0, 2, 7, 1, 0, 2, 2, 0, 0, 3, 2, 0
Offset: 0

Views

Author

Joerg Arndt, Nov 23 2016

Keywords

Comments

Write A000041(n) = 2^k * s where s is odd, then a(n) = k.

Crossrefs

Cf. A052002, A237280, A278779, A278780, A278781, A278782, A278783, A278784 (positions of terms 0, 1, 2, ..., 7 in this sequence).
Cf. also A278241.

Programs

  • Maple
    a:= n-> padic[ordp](combinat[numbpart](n), 2):
    seq(a(n), n=0..120);  # Alois P. Heinz, Nov 23 2016
  • Mathematica
    a[n_] := IntegerExponent[PartitionsP[n], 2]; Array[a, 100, 0] (* Amiram Eldar, May 25 2024 *)
  • PARI
    { my( x='x+O('x^100), v=Vec(1/eta(x)) ); vector(#v,n,valuation(v[n],2)) }

Formula

From Amiram Eldar, May 25 2024: (Start)
a(n) = A007814(A000041(n)).
a(n) = log_2(A069935(n)). (End)

A237281 Numbers k such that A000041(k) == 3 (mod 4).

Original entry on oeis.org

3, 5, 6, 7, 14, 16, 20, 23, 24, 33, 35, 38, 41, 44, 51, 53, 54, 56, 60, 63, 68, 72, 76, 77, 81, 82, 91, 92, 95, 99, 102, 111, 115, 118, 121, 127, 134, 138, 139, 140, 146, 156, 159, 161, 164, 165, 166, 168, 169, 173, 177, 178, 182, 183, 188, 192, 196, 201
Offset: 1

Views

Author

Clark Kimberling, Feb 05 2014

Keywords

Comments

The set of positive integers is partitioned by the sequences A237278-A237281.

Examples

			A000041(6) = 11 == 3 (mod 4).
		

Crossrefs

Programs

  • Mathematica
    f[n_, k_] := Select[Range[250], Mod[PartitionsP[#], n] == k &]
    Table[f[4, k], {k, 0, 3}] (* A237278-A237281 *)

A275029 Partition numbers (A000041) congruent to 2 (mod 4).

Original entry on oeis.org

2, 22, 30, 42, 490, 1002, 1958, 3010, 3718, 6842, 12310, 37338, 53174, 89134, 105558, 124754, 204226, 614154, 1741630, 2012558, 13848650, 34262962, 133230930, 214481126, 271248950, 607163746, 4835271870, 30388671978, 45060624582, 88751778802, 107438159466
Offset: 1

Views

Author

Colin Barker, Nov 13 2016

Keywords

Comments

Partition numbers having the same number of even divisors as odd divisors.
The corresponding indices are in A237280.
The intersection of A000041 and A016825.

Examples

			30 is in the sequence because it is a partition number, and its divisors are [1,2,3,5,6,10,15,30].
		

Crossrefs

Programs

  • Maple
    select(t -> t mod 4 = 2, map(combinat:-numbpart, [$1..500])); # Robert Israel, Nov 14 2016
  • Mathematica
    Select[PartitionsP@ Range@ 160, Mod[#, 4] == 2 &] (* Michael De Vlieger, Nov 15 2016 *)
  • PARI
    a000041(n) = numbpart(n)
    terms(n) = my(i=0, k=2); while(1, if(Mod(a000041(k), 4)==2, print1(a000041(k), ", "); i++); if(i==n, break); k++)
    /* Print initial 50 terms as follows */
    terms(50) \\ Felix Fröhlich, Nov 15 2016

A121062 Partition numbers mod 4.

Original entry on oeis.org

1, 1, 2, 3, 1, 3, 3, 3, 2, 2, 2, 0, 1, 1, 3, 0, 3, 1, 1, 2, 3, 0, 2, 3, 3, 2, 0, 2, 2, 1, 0, 2, 1, 3, 2, 3, 1, 1, 3, 1, 2, 3, 2, 1, 3, 2, 2, 2, 1, 1, 2, 3, 1, 3, 3, 0, 3, 2, 0, 0, 3, 1, 0, 3, 2, 2, 0, 1, 3, 1, 0, 1, 3, 1, 0, 0, 3, 3, 0, 2, 0, 3, 3, 1, 0, 1, 2, 1, 1, 1, 1, 3, 3, 1, 0, 3, 0, 2, 0, 3, 0, 2, 3, 2, 1
Offset: 0

Views

Author

Jonathan Vos Post, Aug 10 2006

Keywords

Comments

P_n==0: 11, 15, 21, 26, 30, 55, 58, 59, 62, 66, 70, 74, 75, 78, 80, 84, 94, 96, 98, 100, ... A237278.
P_n==1: 0, 1, 4, 12, 13, 17, 18, 29, 32, 36, 37, 39, 43, 48, 49, 52, 61, 67, 69, 71, 73, ... A237279.
P_n==2: 2, 8, 9, 10, 19, 22, 25, 27, 28, 31, 34, 40, 42, 45, 46, 47, 50, 57, 64, 65, 79, ... A237280.
P_n==3: 3, 5, 6, 7, 14, 16, 20, 23, 24, 33, 35, 38, 41, 44, 51, 53, 54, 56, 60, 63, 68, ... A237281.

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
         (b(n, i-1)+b(n-i, min(n-i, i))) mod 4))
        end:
    a:= n-> b(n$2):
    seq(a(n), n=0..104);  # Alois P. Heinz, Dec 20 2024
  • Mathematica
    f[n_] := Mod[PartitionsP@n, 4]; Table[f@n, {n, 0, 104}] (* Robert G. Wilson v *)
  • PARI
    a(n) = numbpart(n) % 4; \\ Michel Marcus, Jun 29 2016

Formula

a(n) = A000041(n) mod 4 = A010873(A000041(n)).
a(n) = A000025(n) mod 4. - John M. Campbell, Jun 29 2016

Extensions

More terms from Robert G. Wilson v, Aug 17 2006

A237279 Numbers k such that A000041(k) == 1 (mod 4).

Original entry on oeis.org

1, 4, 12, 13, 17, 18, 29, 32, 36, 37, 39, 43, 48, 49, 52, 61, 67, 69, 71, 73, 83, 85, 87, 88, 89, 90, 93, 104, 105, 107, 114, 119, 123, 132, 143, 144, 145, 148, 150, 152, 155, 157, 162, 172, 181, 185, 186, 189, 190, 193, 194, 195, 199, 203, 208, 216, 219
Offset: 1

Views

Author

Clark Kimberling, Feb 05 2014

Keywords

Comments

The set of positive integers is partitioned by the sequences A237278-A237281.

Examples

			A000041(4) = 5 == 1 (mod 4).
		

Crossrefs

Programs

  • Mathematica
    f[n_, k_] := Select[Range[250], Mod[PartitionsP[#], n] == k &]
    Table[f[4, k], {k, 0, 3}] (* A237278-A237281 *)
Showing 1-6 of 6 results.