cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A237420 If n is odd, then a(n) = 0; otherwise, a(n) = n.

Original entry on oeis.org

0, 0, 2, 0, 4, 0, 6, 0, 8, 0, 10, 0, 12, 0, 14, 0, 16, 0, 18, 0, 20, 0, 22, 0, 24, 0, 26, 0, 28, 0, 30, 0, 32, 0, 34, 0, 36, 0, 38, 0, 40, 0, 42, 0, 44, 0, 46, 0, 48, 0, 50, 0, 52, 0, 54, 0, 56, 0, 58, 0, 60, 0, 62, 0, 64, 0, 66, 0, 68, 0, 70, 0, 72, 0, 74
Offset: 0

Views

Author

Vincenzo Librandi, Feb 24 2014

Keywords

Comments

Normally the OEIS excludes sequences in which every other term is zero. But there are exceptions for especially important sequences like this one. - N. J. A. Sloane, Feb 27 2014
Essentially the factorial expansion of exp(-1): exp(-1) = Sum_{n>=1} a(n)/(n+1)!. - Joerg Arndt, Mar 13 2014
a(n) is the number of m < n for which a(m) has the same parity as n. For instance, a(4) = 4 because 4 has the same parity as a(0), a(1), a(2), and a(3). - Alec Jones, May 16 2016
This sequence is an example of a sequence that has no limit while the Cesàro means limit is infinite. See A354280 for further information. - Bernard Schott, May 22 2022

References

  • J. M. Arnaudiès, P. Delezoide et H. Fraysse, Exercices résolus d'Analyse du cours de mathématiques - 2, Dunod, Exercice 10, pp. 14-16.

Crossrefs

About the Cesàro mean theorem: A033999, A114112.

Programs

  • Magma
    [IsOdd(n) select 0 else n: n in [1..80]];
    
  • Magma
    [(1+(-1)^n)*n/2: n in [1..80]];
    
  • Magma
    &cat [[n, 0]: n in [0..80 by 2]]; // Bruno Berselli, Nov 11 2016
    
  • Maple
    seq(op([0,2*i]),i=1..30); # Robert Israel, Aug 27 2015
  • Mathematica
    Table[If[OddQ[n], 0, n], {n, 80}]
    CoefficientList[Series[2 x /(1 - x^2)^2, {x, 0, 80}], x]
    LinearRecurrence[{0, 2, 0, -1}, {0, 0, 2, 0}, 75] (* Robert G. Wilson v, Nov 11 2016 *)
    Riffle[Range[0,80,2],0] (* Harvey P. Dale, Mar 16 2021 *)
  • PARI
    a(n)=if(n%2==0,n,0) \\ Anders Hellström, Aug 27 2015
    
  • Python
    def a(n): return 0 if n%2 else n # Michael S. Branicky, Jun 05 2022

Formula

O.g.f.: 2*x^2/(1-x^2)^2.
E.g.f.: x*sinh(x). - Robert Israel, Aug 27 2015
a(n) = 2*a(n-2) - a(n-4) for n>4.
a(n) = 2*A142150(n) = (1+(-1)^n)*n/2 = n*((n-1) mod 2).
a(n) = floor(n^(-1)^n) for n>1. - Ilya Gutkovskiy, Aug 27 2015
Sum_{i=1..n} a(i) = A110660(n). - Bruno Berselli, Feb 27 2014
a(n) = -1 + ceiling((n + 1)^(sin(Pi*n/2) + cos(Pi*n))). - Lechoslaw Ratajczak, Nov 06 2016

Extensions

Edited by Bruno Berselli, Feb 27 2014