A237420 If n is odd, then a(n) = 0; otherwise, a(n) = n.
0, 0, 2, 0, 4, 0, 6, 0, 8, 0, 10, 0, 12, 0, 14, 0, 16, 0, 18, 0, 20, 0, 22, 0, 24, 0, 26, 0, 28, 0, 30, 0, 32, 0, 34, 0, 36, 0, 38, 0, 40, 0, 42, 0, 44, 0, 46, 0, 48, 0, 50, 0, 52, 0, 54, 0, 56, 0, 58, 0, 60, 0, 62, 0, 64, 0, 66, 0, 68, 0, 70, 0, 72, 0, 74
Offset: 0
References
- J. M. Arnaudiès, P. Delezoide et H. Fraysse, Exercices résolus d'Analyse du cours de mathématiques - 2, Dunod, Exercice 10, pp. 14-16.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000 (corrected by Ray Chandler, Jan 19 2019).
- ProofWiki, Cesàro mean.
- Wikipedia, Ernesto Cesàro.
- Wikipédia, Lemme de Cesàro (in French).
- Index entries for linear recurrences with constant coefficients, signature (0,2,0,-1).
Crossrefs
Programs
-
Magma
[IsOdd(n) select 0 else n: n in [1..80]];
-
Magma
[(1+(-1)^n)*n/2: n in [1..80]];
-
Magma
&cat [[n, 0]: n in [0..80 by 2]]; // Bruno Berselli, Nov 11 2016
-
Maple
seq(op([0,2*i]),i=1..30); # Robert Israel, Aug 27 2015
-
Mathematica
Table[If[OddQ[n], 0, n], {n, 80}] CoefficientList[Series[2 x /(1 - x^2)^2, {x, 0, 80}], x] LinearRecurrence[{0, 2, 0, -1}, {0, 0, 2, 0}, 75] (* Robert G. Wilson v, Nov 11 2016 *) Riffle[Range[0,80,2],0] (* Harvey P. Dale, Mar 16 2021 *)
-
PARI
a(n)=if(n%2==0,n,0) \\ Anders Hellström, Aug 27 2015
-
Python
def a(n): return 0 if n%2 else n # Michael S. Branicky, Jun 05 2022
Formula
O.g.f.: 2*x^2/(1-x^2)^2.
E.g.f.: x*sinh(x). - Robert Israel, Aug 27 2015
a(n) = 2*a(n-2) - a(n-4) for n>4.
a(n) = 2*A142150(n) = (1+(-1)^n)*n/2 = n*((n-1) mod 2).
a(n) = floor(n^(-1)^n) for n>1. - Ilya Gutkovskiy, Aug 27 2015
Sum_{i=1..n} a(i) = A110660(n). - Bruno Berselli, Feb 27 2014
a(n) = -1 + ceiling((n + 1)^(sin(Pi*n/2) + cos(Pi*n))). - Lechoslaw Ratajczak, Nov 06 2016
Extensions
Edited by Bruno Berselli, Feb 27 2014
Comments