A034296
Number of flat partitions of n: partitions {a_i} with each |a_i - a_{i-1}| <= 1.
Original entry on oeis.org
1, 1, 2, 3, 4, 5, 7, 8, 10, 13, 15, 18, 23, 26, 31, 39, 44, 52, 63, 72, 85, 101, 115, 134, 158, 181, 208, 243, 277, 318, 369, 418, 478, 549, 622, 710, 809, 914, 1036, 1177, 1328, 1498, 1695, 1904, 2143, 2416, 2706, 3036, 3408, 3811, 4264, 4769, 5319, 5934, 6621
Offset: 0
From _Joerg Arndt_, Dec 27 2012: (Start)
The a(11)=18 flat partitions of 11 are (in lexicographic order)
[ 1] [ 1 1 1 1 1 1 1 1 1 1 1 ]
[ 2] [ 2 1 1 1 1 1 1 1 1 1 ]
[ 3] [ 2 2 1 1 1 1 1 1 1 ]
[ 4] [ 2 2 2 1 1 1 1 1 ]
[ 5] [ 2 2 2 2 1 1 1 ]
[ 6] [ 2 2 2 2 2 1 ]
[ 7] [ 3 2 1 1 1 1 1 1 ]
[ 8] [ 3 2 2 1 1 1 1 ]
[ 9] [ 3 2 2 2 1 1 ]
[10] [ 3 2 2 2 2 ]
[11] [ 3 3 2 1 1 1 ]
[12] [ 3 3 2 2 1 ]
[13] [ 3 3 3 2 ]
[14] [ 4 3 2 1 1 ]
[15] [ 4 3 2 2 ]
[16] [ 4 4 3 ]
[17] [ 6 5 ]
[18] [ 11 ]
The a(11)=18 partitions of 11 where no part (except possibly the largest) is repeated are
[ 1] [ 1 1 1 1 1 1 1 1 1 1 1 ]
[ 2] [ 2 2 2 2 2 1 ]
[ 3] [ 3 3 3 2 ]
[ 4] [ 4 4 2 1 ]
[ 5] [ 4 4 3 ]
[ 6] [ 5 3 2 1 ]
[ 7] [ 5 4 2 ]
[ 8] [ 5 5 1 ]
[ 9] [ 6 3 2 ]
[10] [ 6 4 1 ]
[11] [ 6 5 ]
[12] [ 7 3 1 ]
[13] [ 7 4 ]
[14] [ 8 2 1 ]
[15] [ 8 3 ]
[16] [ 9 2 ]
[17] [ 10 1 ]
[18] [ 11 ]
(End)
- Alois P. Heinz, Table of n, a(n) for n = 0..10000
- George E. Andrews, The Bhargava-Adiga Summation and Partitions, 2016; See page 4 equation (2.1).
- Shane Chern, On a conjecture of George Beck, arXiv:1705.10700 [math.NT], 2017.
- P. J. Grabner, A. Knopfmacher, Analysis of some new partition statistics, Ramanujan J., 12, 2006, 439-454.
- Jia Huang, Compositions with restricted parts, arXiv:1812.11010 [math.CO], 2018. Also Discrete Masth., 343 (2020), # 111875.
- Jane Y. X. Yang, Combinatorial proofs and generalizations on conjectures related with Euler's partition theorem, arXiv:1801.06815 [math.CO], 2018.
Sequences "number of partitions with max diff d":
A000005 (d=0, for n>=1), this sequence (d=1),
A224956 (d=2),
A238863 (d=3),
A238864 (d=4),
A238865 (d=5),
A238866 (d=6),
A238867 (d=7),
A238868 (d=8),
A238869 (d=9),
A000041 (d --> infinity).
-
g:= 1+sum(x^j*product(1+x^i, i=1..j-1)/(1-x^j), j=1..60): gser:=series(g, x=0, 55): seq(coeff(gser, x, n), n=0..50); # Emeric Deutsch, Feb 23 2006
# second Maple program:
b:= proc(n, i) option remember;
`if`(n=0, 1, `if`(i<1, 0, add(b(n-i*j, i-1), j=1..n/i)))
end:
a:= n-> add(b(n, k), k=0..n):
seq(a(n), n=0..70); # Alois P. Heinz, Jul 06 2012
-
nn=54;Drop[CoefficientList[Series[Sum[x^i/(1-x^i)Product[1+x^j,{j,1,i-1}],{i,1,nn}],{x,0,nn}],x],1] (* Geoffrey Critzer, Sep 28 2013 *)
b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, Sum[b[n-i*j, i-1], {j, 1, n/i}]]]; a[n_] := Sum[b[n, k], {k, 1, n}]; Table[a[n], {n, 1, 70}] (* Jean-François Alcover, Mar 24 2015, after Alois P. Heinz *)
a[ n_] := SeriesCoefficient[ Sum[ x^k / (1 - x^k) QPochhammer[ -x, x, k - 1] // FunctionExpand, {k, n}], {x, 0, n}]; (* Michael Somos, Aug 07 2017 *)
-
N = 66; x = 'x + O('x^N);
gf = sum(n=1,N, x^n/(1-x^n) * prod(k=1,n-1,1+x^k) );
v = Vec(gf)
/* Joerg Arndt, Apr 21 2013 */
-
{a(n) = my(t); if( n<1, 0, polcoeff(sum(k=1, n, (t *= 1 + x^k) * x^k / (1 - x^(2*k)), t = 1 + x * O(x^n)), n))}; /* Michael Somos, Aug 07 2017 */
-
{a(n) = my(c); forpart(p=n, c++; for(i=1, #p-1, if( p[i+1] > p[i] + 1, c--; break))); c}; /* Michael Somos, Aug 13 2017 */
-
from sympy.core.cache import cacheit
@cacheit
def b(n, i): return 1 if n==0 else 0 if i<1 else sum(b(n - i*j, i - 1) for j in range(1, n//i + 1))
def a(n): return sum(b(n, k) for k in range(n + 1))
print([a(n) for n in range(71)]) # Indranil Ghosh, Aug 14 2017, after Maple code by Alois P. Heinz
A238353
Triangle T(n,k) read by rows: T(n,k) is the number of partitions of n (as weakly ascending list of parts) with maximal ascent k, n >= 0, 0 <= k <= n.
Original entry on oeis.org
1, 1, 0, 2, 0, 0, 2, 1, 0, 0, 3, 1, 1, 0, 0, 2, 3, 1, 1, 0, 0, 4, 3, 2, 1, 1, 0, 0, 2, 6, 3, 2, 1, 1, 0, 0, 4, 6, 6, 2, 2, 1, 1, 0, 0, 3, 10, 6, 5, 2, 2, 1, 1, 0, 0, 4, 11, 11, 6, 4, 2, 2, 1, 1, 0, 0, 2, 16, 13, 10, 5, 4, 2, 2, 1, 1, 0, 0, 6, 17, 19, 12, 9, 4, 4, 2, 2, 1, 1, 0, 0, 2, 24, 24, 18, 11, 8, 4, 4, 2, 2, 1, 1, 0, 0
Offset: 0
Triangle starts:
00: 1;
01: 1, 0;
02: 2, 0, 0;
03: 2, 1, 0, 0;
04: 3, 1, 1, 0, 0;
05: 2, 3, 1, 1, 0, 0;
06: 4, 3, 2, 1, 1, 0, 0;
07: 2, 6, 3, 2, 1, 1, 0, 0;
08: 4, 6, 6, 2, 2, 1, 1, 0, 0;
09: 3, 10, 6, 5, 2, 2, 1, 1, 0, 0;
10: 4, 11, 11, 6, 4, 2, 2, 1, 1, 0, 0;
11: 2, 16, 13, 10, 5, 4, 2, 2, 1, 1, 0, 0;
12: 6, 17, 19, 12, 9, 4, 4, 2, 2, 1, 1, 0, 0;
13: 2, 24, 24, 18, 11, 8, 4, 4, 2, 2, 1, 1, 0, 0;
14: 4, 27, 34, 22, 17, 10, 7, 4, 4, 2, 2, 1, 1, 0, 0;
15: 4, 35, 39, 33, 20, 15, 9, 7, 4, 4, 2, 2, 1, 1, 0, 0;
...
The 7 partitions of 5 and their maximal ascents are:
1: [ 1 1 1 1 1 ] 0
2: [ 1 1 1 2 ] 1
3: [ 1 1 3 ] 2
4: [ 1 2 2 ] 1
5: [ 1 4 ] 3
6: [ 2 3 ] 1
7: [ 5 ] 0
There are 2 rows with 0 ascents, 3 with 1 ascent, 1 for ascents 2 and 3, giving row 5 of the triangle.
Cf.
A238354 (partitions by minimal ascent).
-
b:= proc(n, i, t) option remember; `if`(n=0, 1,
`if`(i<1, 0, b(n, i-1, t)+`if`(i>n, 0, (p->
`if`(t=0 or t-i=0, p, add(coeff(p, x, j)*x^
max(j, t-i), j=0..degree(p))))(b(n-i, i, i)))))
end:
T:= n-> (p-> seq(coeff(p, x, k), k=0..n))(b(n$2, 0)):
seq(T(n), n=0..15);
-
b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, If[i<1, 0, b[n, i-1, t] + If[i>n, 0, Function[{p}, If[t == 0 || t-i == 0, p, Sum[Coefficient[p, x, j]*x^ Max[j, t-i], {j, 0, Exponent[p, x]}]]][b[n-i, i, i]]]]]; T[n_] := Function[{p}, Table[Coefficient[p, x, k], {k, 0, n}]][b[n, n, 0]]; Table[T[n], {n, 0, 15}] // Flatten (* Jean-François Alcover, Jan 06 2015, translated from Maple *)
A224956
Number of partitions of n where the difference between consecutive parts is at most 2.
Original entry on oeis.org
1, 1, 2, 3, 5, 6, 9, 11, 16, 19, 26, 31, 42, 50, 65, 78, 100, 119, 149, 178, 222, 263, 322, 382, 465, 549, 660, 778, 932, 1093, 1299, 1520, 1798, 2096, 2464, 2868, 3357, 3892, 4536, 5247, 6096, 7028, 8133, 9357, 10795, 12388, 14244, 16309, 18706, 21367, 24440, 27857, 31788, 36157
Offset: 0
The a(7)=11 such partitions of 7 are
01: [ 1 1 1 1 1 1 1 ]
02: [ 2 1 1 1 1 1 ]
03: [ 2 2 1 1 1 ]
04: [ 2 2 2 1 ]
05: [ 3 1 1 1 1 ]
06: [ 3 2 1 1 ]
07: [ 3 2 2 ]
08: [ 3 3 1 ]
09: [ 4 2 1 ]
10: [ 4 3 ]
11: [ 7 ]
The a(7)=11 partitions with no part (excepting the largest) repeated more than twice are the conjugates of the above respectively:
01: [7]
02: [6 1]
03: [5 2]
04: [4 3]
05: [5 1 1]
06: [4 2 1]
07: [3 3 1]
08: [3 2 2]
09: [3 2 1 1]
10: [2 2 2 1]
11: [1 1 1 1 1 1 1]
Sequences "number of partitions with max diff d":
A000005 (d=0, for n>=1),
A034296 (d=1),
A224956 (d=2),
A238863 (d=3),
A238864 (d=4),
A238865 (d=5),
A238866 (d=6),
A238867 (d=7),
A238868 (d=8),
A238869 (d=9),
A000041 (d --> infinity).
-
b:= proc(n, i, t) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(b(n-i*j, i-1, `if`(j>0, 0, 1)), j=t..n/i)))
end:
a:= n-> add(b(n, k, 1), k=0..n):
seq(a(n), n=0..70); # Alois P. Heinz, May 01 2013
-
nn=53;CoefficientList[Series[1+Sum[x^k/(1-x^k)Product[1+x^i+x^(2i),{i,1,k-1}],{k,1,nn}],{x,0,nn}],x] (* Geoffrey Critzer, Sep 30 2013 *)
b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, If[i<1, 0, Sum[b[n-i*j, i-1, If[j>0, 0, 1]], {j, t, n/i}]]]; a[n_] := Sum[b[n, k, 1], {k, 0, n}]; Table[a[n], {n, 0, 70}] (* Jean-François Alcover, Jun 19 2015, after Alois P. Heinz *)
-
N=66; q = 'q + O('q^N);
Vec ( 1 + sum(k=1, N, q^k/(1-q^k) * prod(i=1,k-1, 1+q^i+q^(2*i) ) ) )
\\ Joerg Arndt, Mar 08 2014
A238863
Number of partitions of n where the difference between consecutive parts is at most 3.
Original entry on oeis.org
1, 1, 2, 3, 5, 7, 10, 13, 18, 24, 32, 41, 54, 68, 87, 111, 139, 174, 218, 269, 333, 410, 501, 611, 745, 902, 1090, 1315, 1578, 1891, 2263, 2695, 3205, 3805, 4503, 5322, 6277, 7384, 8673, 10172, 11904, 13908, 16227, 18894, 21971, 25516, 29578, 34245, 39597, 45717, 52720, 60721, 69842, 80243, 92091, 105559, 120865, 138248
Offset: 0
Sequences "number of partitions with max diff d":
A000005 (d=0, for n>=1),
A034296 (d=1),
A224956 (d=2), this sequence,
A238864 (d=4),
A238865 (d=5),
A238866 (d=6),
A238867 (d=7),
A238868 (d=8),
A238869 (d=9),
A000041 (d --> infinity).
-
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(b(n-i*j, i-1), j=0..min(3, n/i))))
end:
g:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(b(n-i*j, i-1), j=1..n/i)))
end:
a:= n-> add(g(n, k), k=0..n):
seq(a(n), n=0..60); # Alois P. Heinz, Mar 09 2014
-
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, Sum[b[n-i*j, i-1], {j, 0, Min[3, n/i]}]]]; g[n_, i_] := g[n, i] = If[n == 0, 1, If[i<1, 0, Sum[b[n-i*j, i-1], {j, 1, n/i}]]]; a[n_] := Sum[g[n, k], {k, 0, n}]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Feb 18 2015, after Alois P. Heinz *)
-
N=66; q = 'q + O('q^N);
Vec( 1 + sum(k=1, N, q^k/(1-q^k) * prod(i=1,k-1, (1-q^(4*i))/(1-q^i) ) ) )
A238864
Number of partitions of n where the difference between consecutive parts is at most 4.
Original entry on oeis.org
1, 1, 2, 3, 5, 7, 11, 14, 20, 26, 36, 46, 63, 79, 104, 131, 169, 210, 269, 332, 418, 515, 640, 782, 967, 1173, 1435, 1736, 2108, 2534, 3062, 3663, 4398, 5243, 6259, 7429, 8834, 10441, 12356, 14559, 17159, 20144, 23661, 27686, 32403, 37807, 44102, 51306, 59680, 69235, 80297, 92924, 107482, 124070, 143157, 164862, 189763, 218057
Offset: 0
Sequences "number of partitions with max diff d":
A000005 (d=0, for n>=1),
A034296 (d=1),
A224956 (d=2),
A238863 (d=3), this sequence,
A238865 (d=5),
A238866 (d=6),
A238867 (d=7),
A238868 (d=8),
A238869 (d=9),
A000041 (d --> infinity).
-
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(b(n-i*j, i-1), j=0..min(4, n/i))))
end:
g:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(b(n-i*j, i-1), j=1..n/i)))
end:
a:= n-> add(g(n, k), k=0..n):
seq(a(n), n=0..60); # Alois P. Heinz, Mar 09 2014
-
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i-1], {j, 0, Min[4, n/i]}]]]; g[n_, i_] := g[n, i] = If[n == 0, 1, If[i<1, 0, Sum[b[n - i*j, i - 1], {j, 1, n/i}]]]; a[n_] := Sum[g[n, k], {k, 0, n}]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Feb 18 2015, after Alois P. Heinz *)
-
N=66; q = 'q + O('q^N);
Vec( 1 + sum(k=1, N, q^k/(1-q^k) * prod(i=1,k-1, (1-q^(5*i))/(1-q^i) ) ) )
A238866
Number of partitions of n where the difference between consecutive parts is at most 6.
Original entry on oeis.org
1, 1, 2, 3, 5, 7, 11, 15, 22, 29, 40, 52, 71, 91, 121, 155, 202, 255, 328, 410, 520, 647, 810, 1000, 1244, 1525, 1879, 2293, 2804, 3401, 4135, 4988, 6028, 7241, 8701, 10404, 12447, 14818, 17645, 20931, 24822, 29334, 34658, 40817, 48052, 56416, 66190, 77471, 90621, 105756, 123338, 143555, 166956, 193815, 224828, 260352
Offset: 0
Sequences "number of partitions with max diff d":
A000005 (d=0, for n>=1),
A034296 (d=1),
A224956 (d=2),
A238863 (d=3),
A238864 (d=4),
A238865 (d=5), this sequence,
A238867 (d=7),
A238868 (d=8),
A238869 (d=9),
A000041 (d --> infinity).
-
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(b(n-i*j, i-1), j=0..min(6, n/i))))
end:
g:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(b(n-i*j, i-1), j=1..n/i)))
end:
a:= n-> add(g(n, k), k=0..n):
seq(a(n), n=0..60); # Alois P. Heinz, Mar 09 2014
-
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, Sum[b[n - i*j, i-1], {j, 0, Min[6, n/i]}]]]; g[n_, i_] := g[n, i] = If[n == 0, 1, If[i<1, 0, Sum[b[n - i*j, i-1], {j, 1, n/i}]]]; a[n_] := Sum[g[n, k], {k, 0, n}]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Feb 18 2015, after Alois P. Heinz *)
-
N=66; q = 'q + O('q^N);
Vec( 1 + sum(k=1, N, q^k/(1-q^k) * prod(i=1,k-1, (1-q^(7*i))/(1-q^i) ) ) )
A238867
Number of partitions of n where the difference between consecutive parts is at most 7.
Original entry on oeis.org
1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 41, 54, 73, 95, 125, 162, 210, 268, 344, 434, 549, 688, 861, 1069, 1328, 1637, 2016, 2472, 3023, 3682, 4479, 5424, 6558, 7905, 9508, 11404, 13657, 16307, 19440, 23123, 27454, 32526, 38479, 45424, 53545, 63006, 74024, 86824, 101701, 118931, 138899, 161983, 188656, 219419, 254895, 295709
Offset: 0
Sequences "number of partitions with max diff d":
A000005 (d=0, for n>=1),
A034296 (d=1),
A224956 (d=2),
A238863 (d=3),
A238864 (d=4),
A238865 (d=5),
A238866 (d=6), this sequence,
A238868 (d=8),
A238869 (d=9),
A000041 (d --> infinity).
-
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(b(n-i*j, i-1), j=0..min(7, n/i))))
end:
g:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(b(n-i*j, i-1), j=1..n/i)))
end:
a:= n-> add(g(n, k), k=0..n):
seq(a(n), n=0..60); # Alois P. Heinz, Mar 09 2014
-
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, Sum[b[n - i*j, i-1], {j, 0, Min[7, n/i]}]]]; g[n_, i_] := g[n, i] = If[n == 0, 1, If[i<1, 0, Sum[b[n - i*j, i-1], {j, 1, n/i}]]]; a[n_] := Sum[g[n, k], {k, 0, n}]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Feb 18 2015, after Alois P. Heinz *)
-
N=66; q = 'q + O('q^N);
Vec( 1 + sum(k=1, N, q^k/(1-q^k) * prod(i=1,k-1, (1-q^(8*i))/(1-q^i) ) ) )
A238868
Number of partitions of n where the difference between consecutive parts is at most 8.
Original entry on oeis.org
1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 55, 75, 97, 129, 166, 217, 276, 356, 449, 572, 715, 900, 1117, 1393, 1717, 2123, 2601, 3193, 3889, 4744, 5748, 6970, 8404, 10135, 12165, 14600, 17448, 20845, 24813, 29522, 35009, 41491, 49031, 57900, 68195, 80258, 94234, 110553, 129421, 151382, 176724, 206132, 240002, 279195, 324255
Offset: 0
Sequences "number of partitions with max diff d":
A000005 (d=0, for n>=1),
A034296 (d=1),
A224956 (d=2),
A238863 (d=3),
A238864 (d=4),
A238865 (d=5),
A238866 (d=6),
A238867 (d=7), this sequence,
A238869 (d=9),
A000041 (d --> infinity).
-
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(b(n-i*j, i-1), j=0..min(8, n/i))))
end:
g:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(b(n-i*j, i-1), j=1..n/i)))
end:
a:= n-> add(g(n, k), k=0..n):
seq(a(n), n=0..60); # Alois P. Heinz, Mar 09 2014
-
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, Sum[b[n - i*j, i-1], {j, 0, Min[8, n/i]}]]]; g[n_, i_] := g[n, i] = If[n == 0, 1, If[i<1, 0, Sum[b[n - i*j, i-1], {j, 1, n/i}]]]; a[n_] := Sum[g[n, k], {k, 0, n}]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Feb 18 2015, after Alois P. Heinz *)
-
N=66; q = 'q + O('q^N);
Vec( 1 + sum(k=1, N, q^k/(1-q^k) * prod(i=1,k-1, (1-q^(9*i))/(1-q^i) ) ) )
A238869
Number of partitions of n where the difference between consecutive parts is at most 9.
Original entry on oeis.org
1, 1, 2, 3, 5, 7, 11, 15, 22, 30, 42, 56, 76, 99, 131, 170, 221, 283, 364, 461, 586, 737, 926, 1154, 1439, 1779, 2199, 2703, 3317, 4051, 4942, 6001, 7278, 8796, 10610, 12760, 15323, 18344, 21928, 26148, 31127, 36971, 43848, 51890, 61321, 72327, 85183, 100149, 117588, 137827, 161343, 188583, 220139, 256607, 298761, 347360
Offset: 0
Sequences "number of partitions with max diff d":
A000005 (d=0, for n>=1),
A034296 (d=1),
A224956 (d=2),
A238863 (d=3),
A238864 (d=4),
A238865 (d=5),
A238866 (d=6),
A238867 (d=7),
A238868 (d=8), this sequence,
A000041 (d --> infinity).
-
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(b(n-i*j, i-1), j=0..min(9, n/i))))
end:
g:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(b(n-i*j, i-1), j=1..n/i)))
end:
a:= n-> add(g(n, k), k=0..n):
seq(a(n), n=0..60); # Alois P. Heinz, Mar 09 2014
-
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, Sum[b[n - i*j, i-1], {j, 0, Min[9, n/i]}]]]; g[n_, i_] := g[n, i] = If[n == 0, 1, If[i<1, 0, Sum[b[n - i*j, i-1], {j, 1, n/i}]]]; a[n_] := Sum[g[n, k], {k, 0, n}]; Table[a[n], {n, 0, 60}] (* Jean-François Alcover, Feb 18 2015, after Alois P. Heinz *)
Table[Count[IntegerPartitions[n],?(Max[Abs[Differences[#]]]<10&)],{n,0,60}] (* _Harvey P. Dale, Nov 24 2024 *)
-
N=66; q = 'q + O('q^N);
Vec( 1 + sum(k=1, N, q^k/(1-q^k) * prod(i=1,k-1, (1-q^(10*i))/(1-q^i) ) ) )
Showing 1-9 of 9 results.
Comments