cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A002819 Liouville's function L(n) = partial sums of A008836.

Original entry on oeis.org

0, 1, 0, -1, 0, -1, 0, -1, -2, -1, 0, -1, -2, -3, -2, -1, 0, -1, -2, -3, -4, -3, -2, -3, -2, -1, 0, -1, -2, -3, -4, -5, -6, -5, -4, -3, -2, -3, -2, -1, 0, -1, -2, -3, -4, -5, -4, -5, -6, -5, -6, -5, -6, -7, -6, -5, -4, -3, -2, -3, -2, -3, -2, -3, -2, -1, -2, -3, -4, -3, -4, -5, -6, -7, -6, -7, -8, -7, -8, -9, -10, -9, -8, -9, -8, -7, -6
Offset: 0

Views

Author

Keywords

Comments

Short history of conjecture L(n) <= 0 for all n >= 2 by Deborah Tepper Haimo. George Polya conjectured 1919 that L(n) <= 0 for all n >= 2. The conjecture was generally deemed true for nearly 40 years, until 1958, when C. B. Haselgrove proved that L(n) > 0 for infinitely many n. In 1962, R. S. Lehman found that L(906180359) = 1 and in 1980, M. Tanaka discovered that the smallest counterexample of the Polya conjecture occurs when n = 906150257. - Harri Ristiniemi (harri.ristiniemi(AT)nicf.), Jun 23 2001
Prime number theorem is equivalent to a(n)=o(n). - Benoit Cloitre, Feb 02 2003
All integers appear infinitely often in this sequence. - Charles R Greathouse IV, Aug 20 2016
In the Liouville function, every prime is assigned the value -1, so it may be expected that the values of a(n) are minimal (A360659) among all completely multiplicative sign functions. As it turns out, this is the case for n < 14 and n = 20. For any other n < 500 there exists a completely multiplicative sign function with a sum less than that of the Liouville function. Conjecture: A360659(n) < a(n) for n > 20. - Bartlomiej Pawlik, Mar 05 2023

References

  • H. Gupta, On a table of values of L(n), Proceedings of the Indian Academy of Sciences. Section A, 12 (1940), 407-409.
  • H. Gupta, A table of values of Liouville's function L(n), Research Bulletin of East Panjab University, No. 3 (Feb. 1950), 45-55.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    a002819 n = a002819_list !! n
    a002819_list = scanl (+) 0 a008836_list
    -- Reinhard Zumkeller, Nov 19 2011
    
  • Maple
    A002819 := n -> add((-1)^numtheory[bigomega](i),i=1..n): # Peter Luschny, Sep 15 2011
  • Mathematica
    Accumulate[Join[{0},LiouvilleLambda[Range[90]]]] (* Harvey P. Dale, Nov 08 2011 *)
  • PARI
    a(n)=sum(i=1,n,(-1)^bigomega(i))
    
  • PARI
    a(n)=my(v=vectorsmall(n,i,1)); forprime(p=2,sqrtint(n), for(e=2,logint(n,p), forstep(i=p^e, n, p^e, v[i]*=-1))); forprime(p=2,n, forstep(i=p, n, p, v[i]*=-1)); sum(i=1,#v,v[i]) \\ Charles R Greathouse IV, Aug 20 2016
    
  • Python
    from functools import reduce
    from operator import ixor
    from sympy import factorint
    def A002819(n): return sum(-1 if reduce(ixor, factorint(i).values(),0)&1 else 1 for i in range(1,n+1)) # Chai Wah Wu, Dec 19 2022

Formula

a(n) = determinant of A174856. - Mats Granvik, Mar 31 2010
a(n) = Sum_{k=1..floor(sqrt(n))} A002321(floor(n / k^2)). - Daniel Suteu, May 30 2025

Extensions

More terms from Larry Reeves (larryr(AT)acm.org), Jul 09 2001

A061019 Negate primes in factorization of n.

Original entry on oeis.org

1, -2, -3, 4, -5, 6, -7, -8, 9, 10, -11, -12, -13, 14, 15, 16, -17, -18, -19, -20, 21, 22, -23, 24, 25, 26, -27, -28, -29, -30, -31, -32, 33, 34, 35, 36, -37, 38, 39, 40, -41, -42, -43, -44, -45, 46, -47, -48, 49, -50, 51, -52, -53, 54, 55, 56, 57, 58, -59, 60, -61, 62, -63, 64, 65, -66, -67, -68, 69, -70
Offset: 1

Views

Author

Marc LeBrun, Apr 13 2001

Keywords

Comments

Inverse Moebius transform of A158523. - Corrected by Antti Karttunen, Nov 26 2024

Examples

			a(6) = (-2)(-3) = +6, while a(8) = (-2)^3 = -8.
		

Crossrefs

Cf. A000027, A001222, A061020, A001615, A158523 (Möbius transform).
Cf. A027746.
Cf. A239122 (partial sums).

Programs

  • Haskell
    a061019 1 = 1
    a061019 n = product $ map negate $ a027746_row n
    -- Reinhard Zumkeller, Feb 08 2012
    
  • Mathematica
    Table[n (-1)^PrimeOmega[n],{n,70}] (* Harvey P. Dale, Oct 05 2011 *)
  • PARI
    a(n) = if( bitand(bigomega(n),1), - n, n ); /* Joerg Arndt, Sep 19 2012 */
    
  • Python
    from functools import reduce
    from operator import ixor
    from sympy import factorint
    def A061019(n): return -n if reduce(ixor, factorint(n).values(),0)&1 else n # Chai Wah Wu, Dec 20 2022

Formula

a(n) = n*lambda(n), where lambda is Liouville's function: A008836.
a(n) = (-1)^(number of primes dividing n)*n = n * (-1)^A001222(n) = n*A008836(n).
Totally multiplicative with a(p) = -p for prime p. [Jaroslav Krizek, Nov 01 2009]
Dirichlet g.f.: zeta(2*s-2)/zeta(s-1). Dirichlet inverse of A055615, all terms turned positive there. - R. J. Mathar, Apr 16 2011
a(n) = Sum_{d|n} lambda(d)*psi(d) = sum_{d|n} A008836(d)* A001615(d) = n/lambda(n). - Enrique Pérez Herrero, Sep 18 2012
Showing 1-2 of 2 results.