cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A325793 Positive integers whose number of divisors is equal to their sum of prime indices.

Original entry on oeis.org

3, 10, 28, 66, 70, 88, 208, 228, 306, 340, 364, 490, 495, 525, 544, 550, 675, 744, 870, 966, 1160, 1216, 1242, 1254, 1288, 1326, 1330, 1332, 1672, 1768, 1785, 1870, 2002, 2064, 2145, 2295, 2457, 2900, 2944, 3250, 3280, 3430, 3468, 3540, 3724, 4125, 4144, 4248
Offset: 1

Views

Author

Gus Wiseman, May 23 2019

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, with sum A056239(n).

Examples

			The term 70 is in the sequence because it has 8 divisors {1, 2, 5, 7, 10, 14, 35, 70} and its sum of prime indices is also 1 + 3 + 4 = 8.
The sequence of terms together with their prime indices begins:
     3: {2}
    10: {1,3}
    28: {1,1,4}
    66: {1,2,5}
    70: {1,3,4}
    88: {1,1,1,5}
   208: {1,1,1,1,6}
   228: {1,1,2,8}
   306: {1,2,2,7}
   340: {1,1,3,7}
   364: {1,1,4,6}
   490: {1,3,4,4}
   495: {2,2,3,5}
   525: {2,3,3,4}
   544: {1,1,1,1,1,7}
   550: {1,3,3,5}
   675: {2,2,2,3,3}
   744: {1,1,1,2,11}
   870: {1,2,3,10}
   966: {1,2,4,9}
		

Crossrefs

Positions of 0's in A325794.
Contains A239885 except for 1.

Programs

  • Maple
    filter:= proc(n) local F,t;
      F:= ifactors(n)[2];
      add(numtheory:-pi(t[1])*t[2],t=F) = mul(t[2]+1,t=F)
    end proc:
    select(filter, [$1..10000]); # Robert Israel, Oct 16 2023
  • Mathematica
    Select[Range[100],DivisorSigma[0,#]==Total[Cases[FactorInteger[#],{p_,k_}:>PrimePi[p]*k]]&]

A110295 a(n) = 2^(n-1) * prime(n).

Original entry on oeis.org

2, 6, 20, 56, 176, 416, 1088, 2432, 5888, 14848, 31744, 75776, 167936, 352256, 770048, 1736704, 3866624, 7995392, 17563648, 37224448, 76546048, 165675008, 348127232, 746586112, 1627389952, 3388997632, 6912212992, 14361296896
Offset: 1

Views

Author

Ryan Propper, Sep 07 2005

Keywords

References

  • Eric Angelini, "Array with primes." Pers. comm. on the SeqFan mailing list, Sep. 7 2005.

Crossrefs

Programs

  • Magma
    [2^(n-1)*NthPrime(n): n in [1..50]]; // G. C. Greubel, Jan 04 2023
    
  • Mathematica
    Table[2^(n-1)*Prime[n], {n, 30}]
  • SageMath
    [2^(n-1)*nth_prime(n) for n in range(1,50)] # G. C. Greubel, Jan 04 2023

Formula

a(n) = 2*A239885(n). - G. C. Greubel, Jan 04 2023

A325800 Numbers whose sum of prime indices is equal to the number of distinct subset-sums of their prime indices.

Original entry on oeis.org

3, 10, 28, 66, 88, 156, 208, 306, 340, 408, 544, 570, 684, 760, 912, 966, 1216, 1242, 1288, 1380, 1656, 1840, 2208, 2436, 2610, 2900, 2944, 3132, 3248, 3480, 3906, 4092, 4176, 4340, 4640, 4650, 5022, 5208, 5456, 5568, 5580, 6200, 6696, 6944, 7326, 7424, 7440
Offset: 1

Views

Author

Gus Wiseman, May 23 2019

Keywords

Comments

First differs from A325793 in lacking 70.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798, with sum A056239(n). A subset-sum of an integer partition is any sum of a submultiset of it.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions whose sum is equal to their number of distinct subset-sums. The enumeration of these partitions by sum is given by A126796 interlaced with zeros.

Examples

			340 has prime indices {1,1,3,7} which sum to 12 and have 12 distinct subset-sums: {0, 1, 2, 3, 4, 5, 7, 8, 9, 10, 11, 12}, so 340 is in the sequence.
The sequence of terms together with their prime indices begins:
     3: {2}
    10: {1,3}
    28: {1,1,4}
    66: {1,2,5}
    88: {1,1,1,5}
   156: {1,1,2,6}
   208: {1,1,1,1,6}
   306: {1,2,2,7}
   340: {1,1,3,7}
   408: {1,1,1,2,7}
   544: {1,1,1,1,1,7}
   570: {1,2,3,8}
   684: {1,1,2,2,8}
   760: {1,1,1,3,8}
   912: {1,1,1,1,2,8}
   966: {1,2,4,9}
  1216: {1,1,1,1,1,1,8}
  1242: {1,2,2,2,9}
  1288: {1,1,1,4,9}
  1380: {1,1,2,3,9}
		

Crossrefs

Positions of 1's in A325799.
Includes A239885 except for 1.

Programs

  • Maple
    filter:= proc(n) local F,t,S,i,r;
      F:= map(t -> [numtheory:-pi(t[1]),t[2]], ifactors(n)[2]);
      S:= {0}:
      for t in F do
       S:= map(s -> seq(s + i*t[1],i=0..t[2]),S);
      od;
      nops(S) = add(t[1]*t[2],t=F)
    end proc:
    select(filter, [$1..10000]); # Robert Israel, Oct 30 2024
  • Mathematica
    hwt[n_]:=Total[Cases[FactorInteger[n],{p_,k_}:>PrimePi[p]*k]];
    Select[Range[1000],hwt[#]==Length[Union[hwt/@Divisors[#]]]&]

Formula

A056239(a(n)) = A299701(a(n)) = A304793(a(n)) + 1.

A135483 a(n) = Sum_{j=1..n} prime(j)*2^(j-2).

Original entry on oeis.org

1, 4, 14, 42, 130, 338, 882, 2098, 5042, 12466, 28338, 66226, 150194, 326322, 711346, 1579698, 3513010, 7510706, 16292530, 34904754, 73177778, 156015282, 330078898, 703371954, 1517066930, 3211565746, 6667672242, 13848320690, 28478053042, 58811259570
Offset: 1

Views

Author

Ctibor O. Zizka, Feb 07 2008

Keywords

Crossrefs

Partial sums of A239885.

Programs

  • Mathematica
    Table[Sum[2^(i-2) * Prime[i], {i, 1, n}], {n, 1, 10}] (* G. C. Greubel, Oct 15 2016 *)
    Accumulate[Table[Prime[i]*2^(i-2),{i,30}]] (* Harvey P. Dale, Aug 14 2019 *)
  • PARI
    a(n) = sum(k=1, n, prime(k)*2^(k-2)); \\ Michel Marcus, Oct 15 2016
Showing 1-4 of 4 results.