A316429
Heinz numbers of integer partitions whose length is equal to their LCM.
Original entry on oeis.org
2, 6, 9, 20, 50, 56, 84, 125, 126, 176, 189, 196, 240, 294, 360, 416, 441, 540, 600, 624, 686, 810, 900, 936, 968, 1029, 1040, 1088, 1215, 1350, 1404, 1500, 1560, 2025, 2106, 2250, 2340, 2401, 2432, 2600, 2704, 3159, 3375, 3510, 3648, 3750, 3900, 4056, 5265
Offset: 1
3750 is the Heinz number of (3,3,3,3,2,1), whose length and lcm are both 6.
Cf.
A056239,
A074761,
A110295,
A143773,
A237984,
A289508,
A289509,
A290103,
A296150,
A316413,
A316428,
A316430,
A316431.
-
Select[Range[2,200],PrimeOmega[#]==LCM@@Cases[FactorInteger[#],{p_,k_}:>PrimePi[p]]&]
-
heinz(n) = my(f=factor(n), pr=f[,1]~,exps=f[,2], res=vector(vecsum(exps)), t=0); for(i = 1, #pr, pr[i] = primepi(pr[i]); for(j=1, exps[i],t++; res[t] = pr[i])); res
is(n) = my(h = heinz(n)); lcm(h)==#h \\ David A. Corneth, Jul 05 2018
A325761
Heinz numbers of integer partitions whose length is itself a part.
Original entry on oeis.org
1, 2, 6, 9, 15, 20, 21, 30, 33, 39, 45, 50, 51, 56, 57, 69, 70, 75, 84, 87, 93, 105, 110, 111, 123, 125, 126, 129, 130, 140, 141, 159, 165, 170, 175, 176, 177, 183, 189, 190, 195, 196, 201, 210, 213, 219, 230, 237, 245, 249, 255, 264, 267, 275, 285, 290, 291
Offset: 1
The sequence of terms together with their prime indices begins:
1: {}
2: {1}
6: {1,2}
9: {2,2}
15: {2,3}
20: {1,1,3}
21: {2,4}
30: {1,2,3}
33: {2,5}
39: {2,6}
45: {2,2,3}
50: {1,3,3}
51: {2,7}
56: {1,1,1,4}
57: {2,8}
69: {2,9}
70: {1,3,4}
75: {2,3,3}
84: {1,1,2,4}
87: {2,10}
A239885
a(n) = 2^(n-2) * prime(n).
Original entry on oeis.org
1, 3, 10, 28, 88, 208, 544, 1216, 2944, 7424, 15872, 37888, 83968, 176128, 385024, 868352, 1933312, 3997696, 8781824, 18612224, 38273024, 82837504, 174063616, 373293056, 813694976, 1694498816, 3456106496, 7180648448, 14629732352, 30333206528
Offset: 1
-
[2^(n-2)*NthPrime(n): n in [1..50]]; // G. C. Greubel, Jan 04 2023
-
Table[Prime[n]2^(n-2),{n,30}] (* Harvey P. Dale, Aug 19 2019 *)
-
vector(50, n, prime(n)*2^(n-2)) \\ Colin Barker, Mar 29 2014
-
[2^(n-2)*nth_prime(n) for n in range(1,51)] # G. C. Greubel, Jan 04 2023
A367107
Numbers m not divisible by prime(bigomega(m)). Heinz numbers of integer partitions whose length is not a part (counted by A229816).
Original entry on oeis.org
3, 4, 5, 7, 8, 10, 11, 12, 13, 14, 16, 17, 18, 19, 22, 23, 24, 25, 26, 27, 28, 29, 31, 32, 34, 35, 36, 37, 38, 40, 41, 42, 43, 44, 46, 47, 48, 49, 52, 53, 54, 55, 58, 59, 60, 61, 62, 63, 64, 65, 66, 67, 68, 71, 72, 73, 74, 76, 77, 78, 79, 80, 81, 82, 83, 85
Offset: 1
Partitions of this type are counted by
A229816.
A325762
Heinz numbers of integer partitions with no part greater than the number of ones.
Original entry on oeis.org
1, 2, 4, 8, 12, 16, 24, 32, 36, 40, 48, 64, 72, 80, 96, 108, 112, 120, 128, 144, 160, 192, 200, 216, 224, 240, 256, 288, 320, 324, 336, 352, 360, 384, 400, 432, 448, 480, 512, 560, 576, 600, 640, 648, 672, 704, 720, 768, 784, 800, 832, 864, 896, 960, 972, 1000
Offset: 1
The sequence of terms together with their prime indices begins:
1: {}
2: {1}
4: {1,1}
8: {1,1,1}
12: {1,1,2}
16: {1,1,1,1}
24: {1,1,1,2}
32: {1,1,1,1,1}
36: {1,1,2,2}
40: {1,1,1,3}
48: {1,1,1,1,2}
64: {1,1,1,1,1,1}
72: {1,1,1,2,2}
80: {1,1,1,1,3}
96: {1,1,1,1,1,2}
108: {1,1,2,2,2}
112: {1,1,1,1,4}
120: {1,1,1,2,3}
128: {1,1,1,1,1,1,1}
144: {1,1,1,1,2,2}
Cf.
A001222,
A002865,
A007814,
A056239,
A061395,
A093641,
A109298,
A110295,
A112798,
A118914,
A325761,
A325763.
A265127
a(n) = prime(n) * 2^n.
Original entry on oeis.org
4, 12, 40, 112, 352, 832, 2176, 4864, 11776, 29696, 63488, 151552, 335872, 704512, 1540096, 3473408, 7733248, 15990784, 35127296, 74448896, 153092096, 331350016, 696254464, 1493172224, 3254779904, 6777995264, 13824425984, 28722593792, 58518929408, 121332826112
Offset: 1
a(1) = 4 because prime(1) * 2^1 = 2 * 2 = 4.
Showing 1-6 of 6 results.
Comments