A240502 Product of primes appearing in the factorization of n! with even exponents.
1, 1, 1, 1, 1, 1, 6, 6, 3, 3, 30, 30, 10, 10, 35, 21, 21, 21, 42, 42, 210, 10, 55, 55, 330, 330, 2145, 715, 5005, 5005, 6006, 6006, 3003, 91, 3094, 2210, 2210, 2210, 20995, 4845, 1938, 1938, 2261, 2261, 24871, 124355, 5720330, 5720330, 17160990, 17160990, 8580495
Offset: 0
Keywords
Examples
In the prime power factorization 2^7*3^4*5*7 of 9! only the exponent of 3 is even. Thus a(9)=3.
Links
- David A. Corneth, Table of n, a(n) for n = 0..7585
Programs
-
Mathematica
Table[Times@@Select[FactorInteger[n!],EvenQ[#[[2]]]&][[;;,1]],{n,0,50}] (* Harvey P. Dale, Feb 24 2023 *)
-
PARI
a(n) = {my(f = factor(n!)); for (k=1, #f~, f[k, 2] = 1 - (f[k, 2] % 2);); factorback(f);} \\ Michel Marcus, Feb 15 2016
-
PARI
a(n) = {my(res=1); forprime(p=2, n\2, e=val(n,p); if(e%2==0,res*=p)); res} val(n, p) = my(r=0); while(n, r+=n\=p); r \\ David A. Corneth, Feb 24 2023
Formula
a(n) = rad(n!)/core(n!) = A336643(n!). - Benoit Cloitre, Mar 12 2022
Extensions
More terms from Michel Marcus, Feb 15 2016
Comments