cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A240502 Product of primes appearing in the factorization of n! with even exponents.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 6, 6, 3, 3, 30, 30, 10, 10, 35, 21, 21, 21, 42, 42, 210, 10, 55, 55, 330, 330, 2145, 715, 5005, 5005, 6006, 6006, 3003, 91, 3094, 2210, 2210, 2210, 20995, 4845, 1938, 1938, 2261, 2261, 24871, 124355, 5720330, 5720330, 17160990, 17160990, 8580495
Offset: 0

Views

Author

Vladimir Shevelev, Apr 06 2014

Keywords

Comments

All terms are squarefree (A005117). - Michel Marcus, Feb 15 2016

Examples

			In the prime power factorization 2^7*3^4*5*7 of 9! only the exponent of 3 is even. Thus a(9)=3.
		

Crossrefs

Programs

  • Mathematica
    Table[Times@@Select[FactorInteger[n!],EvenQ[#[[2]]]&][[;;,1]],{n,0,50}] (* Harvey P. Dale, Feb 24 2023 *)
  • PARI
    a(n) = {my(f = factor(n!)); for (k=1, #f~, f[k, 2] = 1 - (f[k, 2] % 2);); factorback(f);} \\ Michel Marcus, Feb 15 2016
    
  • PARI
    a(n) = {my(res=1); forprime(p=2, n\2, e=val(n,p); if(e%2==0,res*=p)); res}
    val(n, p) = my(r=0); while(n, r+=n\=p); r \\ David A. Corneth, Feb 24 2023

Formula

a(n) = rad(n!)/core(n!) = A336643(n!). - Benoit Cloitre, Mar 12 2022

Extensions

More terms from Michel Marcus, Feb 15 2016