cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 56 results. Next

A298856 Triangular numbers n for which A240542(n) = A240542(n-1).

Original entry on oeis.org

3, 10, 21, 55, 78, 105, 136, 171, 253, 351, 406, 465, 595, 666, 741, 820, 903, 1081, 1275, 1378, 1711, 1830, 1953, 2211, 2485, 2628, 2775, 2926, 3081, 3403, 3741, 3916, 4465, 4656, 5050, 5253, 5671, 5886, 6105, 6328, 7021, 7503, 7750, 8001, 8515, 9045, 9316, 9591
Offset: 1

Views

Author

Hartmut F. W. Hoft, Jan 27 2018

Keywords

Comments

Number n is in this sequence exactly when two parts of the symmetric representation of sigma(n) meet at the diagonal.
Proof: If n = k*(2*k+1) is in this sequence then the length of row n in A240542 is 2*k and that of row n-1 is 2*k-1, i.e., the last leg of the Dyck path for n down to the diagonal is vertical and that for n-1 is horizontal to the same point on the diagonal. Therefore, one part of the symmetric representation of sigma(n) ends at the diagonal and so does its symmetric copy. Conversely, if two parts meet at the diagonal then the number of legs in the Dyck path to the diagonal for n, i.e., the length of row n in A240542, is one larger than that for n-1 and must be even, i.e., n has the form n = k*(2*k+1).
A156592 is a subsequence since for every number of the form n = p*(2*p+1) where both p and 2*p+1 are primes A240542(n) = A240542(n-1). For a proof let T(n,k) = ceiling((n+1)/k - (k+1)/2) for 1 <= k <= floor((sqrt(8*n+1) - 1)/2) = 2*p, see A235791; then T(n,k) = T(n-1,k) + 1 for k = 1, 2, p, 2*p, and T(n,k) = T(n-1,k) for all other k. Therefore, the two alternating sums defining A240542(n) and A240542(n-1) are equal, i.e., their Dyck paths meet at the diagonal.
Except for missing 10 the intersection of this sequence and A298855 equals A156592. Sequence A262259 is a subsequence of this sequence.
The five known members of A191363 belong to this sequence, and since their symmetric representation consists of two parts of width one (the respective rows of triangle A237048 have the form 1 0 ... 0 1) they also belong to A262259.
Subsequence of A014105. - Omar E. Pol, Jan 31 2018
Second hexagonal numbers without middle divisors. - Omar E. Pol, Mar 10 2023

Examples

			3, 10 and 21 are in the sequence as the illustration of Dyck paths in sequence A237593 shows.
The sequence contains triangular numbers n*(2n+1) where neither n nor 2n+1 are prime. Numbers 1275=25*51 and 2926=38*77 are examples, however, 36 = 4*9 does not belong to the sequence.
78 is the first number in the sequence whose two parts of its symmetric representation contain pieces of width two.
		

Crossrefs

Programs

  • Mathematica
    (* Function path[] is defined in A237270 *)
    meetAtDiagonalQ[n_] := Module[{diags=Transpose[{Drop[Drop[path[n], 1], -1], path[n-1]}]}, Length[Union[diags[[n]]]]==1 && First[diags[[n-1]]]!=Last[diags[[n-1]]]]
    a298856[m_, n_] := Select[Map[#(2#+1)&, Range[m, n]], meetAtDiagonalQ]
    a298856[1, 70] (* data *)

A282131 Records in A240542.

Original entry on oeis.org

1, 2, 3, 5, 6, 7, 9, 11, 12, 13, 15, 17, 18, 20, 22, 23, 25, 26, 28, 30, 32, 34, 35, 36, 38, 40, 42, 44, 45, 47, 49, 52, 54, 56, 57, 59, 61, 63, 65, 67, 68, 70, 71, 73, 75, 77, 79, 81, 85, 86, 88, 89, 91, 93, 95, 97, 99, 102, 104, 106, 108, 110, 112, 113, 115, 117, 118, 120
Offset: 1

Views

Author

Hartmut F. W. Hoft, Feb 06 2017

Keywords

Crossrefs

Cf. A240542 with duplicates removed.

Programs

  • Mathematica
    (* support function a240542[] is defined in A240542 *)
    a[n_] := Union[Map[a240542,Range[n]]]
    a[175] (* data *)

A237593 Triangle read by rows in which row n lists the elements of the n-th row of A237591 followed by the same elements in reverse order.

Original entry on oeis.org

1, 1, 2, 2, 2, 1, 1, 2, 3, 1, 1, 3, 3, 2, 2, 3, 4, 1, 1, 1, 1, 4, 4, 2, 1, 1, 2, 4, 5, 2, 1, 1, 2, 5, 5, 2, 2, 2, 2, 5, 6, 2, 1, 1, 1, 1, 2, 6, 6, 3, 1, 1, 1, 1, 3, 6, 7, 2, 2, 1, 1, 2, 2, 7, 7, 3, 2, 1, 1, 2, 3, 7, 8, 3, 1, 2, 2, 1, 3, 8, 8, 3, 2, 1, 1, 1, 1, 2, 3, 8
Offset: 1

Views

Author

Omar E. Pol, Feb 22 2014

Keywords

Comments

Row n is a palindromic composition of 2*n.
T(n,k) is also the length of the k-th segment in a Dyck path on the first quadrant of the square grid, connecting the x-axis with the y-axis, from (n, 0) to (0, n), starting with a segment in vertical direction, see example.
Conjecture 1: the area under the n-th Dyck path equals A024916(n), the sum of all divisors of all positive integers <= n.
If the conjecture is true then the n-th Dyck path represents the boundary segments after the alternating sum of the elements of the n-th row of A236104.
Conjecture 2: two adjacent Dyck paths never cross (checked by hand up to n = 128), hence the total area between the n-th Dyck path and the (n-1)-st Dyck path is equal to sigma(n) = A000203(n), the sum of divisors of n.
The connection between A196020 and A237271 is as follows: A196020 --> A236104 --> A235791 --> A237591 --> this sequence --> A239660 --> A237270 --> A237271.
PARI scripts area(n) and chkcross(n) have been written to check the 2 properties and have been run up to n=10000. - Michel Marcus, Mar 27 2014
Mathematica functions have been written that verified the 2 properties through n=30000. - Hartmut F. W. Hoft, Apr 07 2014
Comments from Franklin T. Adams-Watters on sequences related to the "symmetric representation of sigma" in A235791 and related sequences, Mar 31 2014: (Start)
The place to start is with A235791, which is very simple. Then go to A237591, also very simple, and A237593, still very simple.
You then need to interpret the rows of A237593 as Dyck paths. This interpretation is in terms of run lengths, so 2,1,1,2 means up twice, down once, up once, and down twice. Because the rows of A237593 are symmetric and of even length, this path will always be symmetric.
Now the surprising fact is that the areas enclosed by the Dyck path for n (laid on its side) always includes the area enclosed for n-1; and the number of squares added is sigma(n).
Finally, look at the connected areas enclosed by n but not by n-1; the size of these areas is the symmetric representation of sigma. (End)
The symmetric representation of sigma, so defined, is row n of A237270. - Peter Munn, Jan 06 2025
It appears that, for the n-th set, the number of cells lying on the first diagonal is equal to A067742(n), the number of middle divisors of n. - Michel Marcus, Jun 21 2014
Checked Michel Marcus's conjecture with two Mathematica functions up to n=100000, for more information see A240542. - Hartmut F. W. Hoft, Jul 17 2014
A003056(n) is also the number of peaks of the Dyck path related to the n-th row of triangle. - Omar E. Pol, Nov 03 2015
The number of peaks of the Dyck path associated to the row A000396(n) of this triangle equals the n-th Mersenne prime A000668(n), hence Mersenne primes are visible in two ways at the pyramid described in A245092. - Omar E. Pol, Dec 19 2016
The limit as n approaches infinity (area under the Dyck path described in the n-th row of triangle divided by n^2) equals Pi^2/12 = zeta(2)/2. (Cf. A072691.) - Omar E. Pol, Dec 18 2021
The connection between the isosceles triangle and the stepped pyramid is due to the fact that this object can also be interpreted as a pop-up card. - Omar E. Pol, Nov 09 2022

Examples

			Triangle begins:
   n
   1 |  1, 1;
   2 |  2, 2;
   3 |  2, 1, 1, 2;
   4 |  3, 1, 1, 3;
   5 |  3, 2, 2, 3;
   6 |  4, 1, 1, 1, 1, 4;
   7 |  4, 2, 1, 1, 2, 4;
   8 |  5, 2, 1, 1, 2, 5;
   9 |  5, 2, 2, 2, 2, 5;
  10 |  6, 2, 1, 1, 1, 1, 2, 6;
  11 |  6, 3, 1, 1, 1, 1, 3, 6;
  12 |  7, 2, 2, 1, 1, 2, 2, 7;
  13 |  7, 3, 2, 1, 1, 2, 3, 7;
  14 |  8, 3, 1, 2, 2, 1, 3, 8;
  15 |  8, 3, 2, 1, 1, 1, 1, 2, 3, 8;
  16 |  9, 3, 2, 1, 1, 1, 1, 2, 3, 9;
  17 |  9, 4, 2, 1, 1, 1, 1, 2, 4, 9;
  18 | 10, 3, 2, 2, 1, 1, 2, 2, 3, 10;
  19 | 10, 4, 2, 2, 1, 1, 2, 2, 4, 10;
  20 | 11, 4, 2, 1, 2, 2, 1, 2, 4, 11;
  21 | 11, 4, 3, 1, 1, 1, 1, 1, 1, 3, 4, 11;
  22 | 12, 4, 2, 2, 1, 1, 1, 1, 2, 2, 4, 12;
  23 | 12, 5, 2, 2, 1, 1, 1, 1, 2, 2, 5, 12;
  24 | 13, 4, 3, 2, 1, 1, 1, 1, 2, 3, 4, 13;
  ...
Illustration of rows 8 and 9 interpreted as Dyck paths in the first quadrant and the illustration of the symmetric representation of sigma(9) = 5 + 3 + 5 = 13, see below:
.
y                       y
.                       .
.                       ._ _ _ _ _                _ _ _ _ _ 5
._ _ _ _ _              .         |              |_ _ _ _ _|
.         |             .         |_ _                     |_ _ 3
.         |_            .             |                    |_  |
.           |_ _        .             |_ _                   |_|_ _ 5
.               |       .                 |                      | |
.   Area = 56   |       .    Area = 69    |          Area = 13   | |
.               |       .                 |                      | |
.               |       .                 |                      | |
. . . . . . . . | . x   . . . . . . . . . | . x                  |_|
.
.    Fig. 1                    Fig. 2                  Fig. 3
.
Figure 1. For n = 8 the 8th row of triangle is [5, 2, 1, 1, 2, 5] and the area under the symmetric Dyck path is equal to A024916(8) = 56.
Figure 2. For n = 9 the 9th row of triangle is [5, 2, 2, 2, 2, 5] and the area under the symmetric Dyck path is equal to A024916(9) = 69.
Figure 3. The symmetric representation of sigma(9): between both symmetric Dyck paths there are three regions (or parts) of sizes [5, 3, 5].
The sum of divisors of 9 is 1 + 3 + 9 = A000203(9) = 13. On the other hand the difference between the areas under the Dyck paths equals the sum of the parts of the symmetric representation of sigma(9) = 69 - 56 = 5 + 3 + 5 = 13, equaling the sum of divisors of 9.
.
Illustration of initial terms as Dyck paths in the first quadrant:
(row n = 1..28)
.  _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
  |_ _ _ _ _ _ _ _ _ _ _ _ _ _  |
  |_ _ _ _ _ _ _ _ _ _ _ _ _ _| |
  |_ _ _ _ _ _ _ _ _ _ _ _ _  | |
  |_ _ _ _ _ _ _ _ _ _ _ _ _| | |
  |_ _ _ _ _ _ _ _ _ _ _ _  | | |_ _ _
  |_ _ _ _ _ _ _ _ _ _ _ _| | |_ _ _  |
  |_ _ _ _ _ _ _ _ _ _ _  | | |_ _  | |_
  |_ _ _ _ _ _ _ _ _ _ _| | |_ _ _| |_  |_
  |_ _ _ _ _ _ _ _ _ _  | |       |_ _|   |_
  |_ _ _ _ _ _ _ _ _ _| | |_ _    |_  |_ _  |_ _
  |_ _ _ _ _ _ _ _ _  | |_ _ _|     |_  | |_ _  |
  |_ _ _ _ _ _ _ _ _| | |_ _  |_      |_|_ _  | |
  |_ _ _ _ _ _ _ _  | |_ _  |_ _|_        | | | |_ _ _ _ _
  |_ _ _ _ _ _ _ _| |     |     | |_ _    | |_|_ _ _ _ _  |
  |_ _ _ _ _ _ _  | |_ _  |_    |_  | |   |_ _ _ _ _  | | |
  |_ _ _ _ _ _ _| |_ _  |_  |_ _  | | |_ _ _ _ _  | | | | |
  |_ _ _ _ _ _  | |_  |_  |_    | |_|_ _ _ _  | | | | | | |
  |_ _ _ _ _ _| |_ _|   |_  |   |_ _ _ _  | | | | | | | | |
  |_ _ _ _ _  |     |_ _  | |_ _ _ _  | | | | | | | | | | |
  |_ _ _ _ _| |_      | |_|_ _ _  | | | | | | | | | | | | |
  |_ _ _ _  |_ _|_    |_ _ _  | | | | | | | | | | | | | | |
  |_ _ _ _| |_  | |_ _ _  | | | | | | | | | | | | | | | | |
  |_ _ _  |_  |_|_ _  | | | | | | | | | | | | | | | | | | |
  |_ _ _|   |_ _  | | | | | | | | | | | | | | | | | | | | |
  |_ _  |_ _  | | | | | | | | | | | | | | | | | | | | | | |
  |_ _|_  | | | | | | | | | | | | | | | | | | | | | | | | |
  |_  | | | | | | | | | | | | | | | | | | | | | | | | | | |
  |_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|_|
.
n: 1 2 3 4 5 6 7 8 9 10..12..14..16..18..20..22..24..26..28
.
It appears that the total area (also the total number of cells) in the first n set of symmetric regions of the diagram is equal to A024916(n), the sum of all divisors of all positive integers <= n.
It appears that the total area (also the total number of cells) in the n-th set of symmetric regions of the diagram is equal to sigma(n) = A000203(n) (checked by hand up n = 128).
From _Omar E. Pol_, Aug 18 2015: (Start)
The above diagram is also the top view of the stepped pyramid described in A245092 and it is also the top view of the staircase described in A244580, in both cases the figure represents the first 28 levels of the structure. Note that the diagram contains (and arises from) a hidden pattern which is shown below.
.
Illustration of initial terms as an isosceles triangle:
Row                                 _ _
1                                 _|1|1|_
2                               _|2 _|_ 2|_
3                             _|2  |1|1|  2|_
4                           _|3   _|1|1|_   3|_
5                         _|3    |2 _|_ 2|    3|_
6                       _|4     _|1|1|1|1|_     4|_
7                     _|4      |2  |1|1|  2|      4|_
8                   _|5       _|2 _|1|1|_ 2|_       5|_
9                 _|5        |2  |2 _|_ 2|  2|        5|_
10              _|6         _|2  |1|1|1|1|  2|_         6|_
11            _|6          |3   _|1|1|1|1|_   3|          6|_
12          _|7           _|2  |2  |1|1|  2|  2|_           7|_
13        _|7            |3    |2 _|1|1|_ 2|    3|            7|_
14      _|8             _|3   _|1|2 _|_ 2|1|_   3|_             8|_
15    _|8              |3    |2  |1|1|1|1|  2|    3|              8|_
16   |9                |3    |2  |1|1|1|1|  2|    3|                9|
...
This diagram is the simpler representation of the sequence.
The number of horizontal line segments in the n-th level in each side of the diagram equals A001227(n), the number of odd divisors of n.
The number of horizontal line segments in the left side of the diagram plus the number of the horizontal line segment in the right side equals A054844(n).
The total number of vertical line segments in the n-th level of the diagram equals A131507(n).
Note that this symmetric pattern also emerges from the front view of the stepped pyramid described in A245092, which is related to sigma A000203, the sum-of-divisors function, and other related sequences. The diagram represents the first 16 levels of the pyramid. (End)
		

Crossrefs

Row n has length 2*A003056(n).
Row sums give A005843, n >= 1.
Column k starts in row A008805(k-1).
Column 1 = right border = A008619, n >= 1.
Bisections are in A259176, A259177.
For further information see A262626.

Programs

  • Mathematica
    row[n_]:=Floor[(Sqrt[8n+1]-1)/2]
    s[n_,k_]:=Ceiling[(n+1)/k-(k+1)/2]-Ceiling[(n+1)/(k+1)-(k+2)/2]
    f[n_,k_]:=If[k<=row[n],s[n,k],s[n,2 row[n]+1-k]]
    TableForm[Table[f[n,k],{n,1,50},{k,1,2 row[n]}]] (* Hartmut F. W. Hoft, Apr 08 2014 *)
  • PARI
    row(n) = {my(orow = row237591(n)); vector(2*#orow, i, if (i <= #orow, orow[i], orow[2*#orow-i+1]));}
    area(n) = {my(rown = row(n)); surf = 0; h = n; odd = 1; for (i=1, #row, if (odd, surf += h*rown[i], h -= rown[i];); odd = !odd;); surf;}
    heights(v, n) = {vh = vector(n); ivh = 1; h = n; odd = 1; for (i=1, #v, if (odd, for (j=1, v[i], vh[ivh] = h; ivh++), h -= v[i];); odd = !odd;); vh;}
    isabove(hb, ha) = {for (i=1, #hb, if (hb[i] < ha[i], return (0));); return (1);}
    chkcross(nn) = {hga = concat(heights(row(1), 1), 0); for (n=2, nn, hgb = heights(row(n), n); if (! isabove(hgb, hga), print("pb cross at n=", n)); hga = concat(hgb, 0););} \\ Michel Marcus, Mar 27 2014
    
  • Python
    from sympy import sqrt
    import math
    def row(n): return int(math.floor((sqrt(8*n + 1) - 1)/2))
    def s(n, k): return int(math.ceil((n + 1)/k - (k + 1)/2)) - int(math.ceil((n + 1)/(k + 1) - (k + 2)/2))
    def T(n, k): return s(n, k) if k<=row(n) else s(n, 2*row(n) + 1 - k)
    for n in range(1, 11): print([T(n, k) for k in range(1, 2*row(n) + 1)]) # Indranil Ghosh, Apr 21 2017

Formula

Let j(n)= floor((sqrt(8n+1)-1)/2) then T(n,k) = A237591(n,k), if k <= j(n); otherwise T(n,k) = A237591(n,2*j(n)+1-k). - Hartmut F. W. Hoft, Apr 07 2014 (corrected by Omar E. Pol, May 31 2015)

Extensions

A minor edit to the definition. - N. J. A. Sloane, Jul 31 2025

A237591 Irregular triangle read by rows: T(n,k) is the difference between the total number of partitions of all positive integers <= n into exactly k consecutive parts, and the total number of partitions of all positive integers <= n into exactly k+1 consecutive parts (n>=1, 1<=k<=A003056(n)).

Original entry on oeis.org

1, 2, 2, 1, 3, 1, 3, 2, 4, 1, 1, 4, 2, 1, 5, 2, 1, 5, 2, 2, 6, 2, 1, 1, 6, 3, 1, 1, 7, 2, 2, 1, 7, 3, 2, 1, 8, 3, 1, 2, 8, 3, 2, 1, 1, 9, 3, 2, 1, 1, 9, 4, 2, 1, 1, 10, 3, 2, 2, 1, 10, 4, 2, 2, 1, 11, 4, 2, 1, 2, 11, 4, 3, 1, 1, 1, 12, 4, 2, 2, 1, 1, 12, 5, 2, 2, 1, 1, 13, 4, 3, 2, 1, 1, 13, 5, 3, 1, 2, 1, 14, 5, 2, 2, 2, 1
Offset: 1

Views

Author

Omar E. Pol, Feb 22 2014

Keywords

Comments

The original name was: Triangle read by rows: T(n,k) = A235791(n,k) - A235791(n,k+1), assuming that the virtual right border of triangle A235791 is A000004.
T(n,k) is also the length of the k-th segment in a zig-zag path on the first quadrant of the square grid, connecting the point (n, 0) with the point (m, m), starting with a segment in vertical direction, where m <= n.
Conjecture: the area of the polygon defined by the x-axis, this zig-zag path and the diagonal [(0, 0), (m, m)], is equal to A024916(n)/2, one half of the sum of all divisors of all positive integers <= n. Therefore the reflected polygon, which is adjacent to the y-axis, with the zig-zag path connecting the point (0, n) with the point (m, m), has the same property. And so on for each octant in the four quadrants.
For the representation of A024916 and A000203 we use two octants, for example: the first octant and the second octant, or the 6th octant and the 7th octant, etc., see A237593.
At least up to n = 128, two zig-zag paths never cross (checked by hand).
The finite sequence formed by the n-th row of triangle together with its mirror row gives the n-th row of triangle A237593.
The connection between A196020 and A237271 is as follows: A196020 --> A236104 --> A235791 --> this sequence --> A237593 --> A239660 --> A237270 --> A237271.
Comments from Franklin T. Adams-Watters on sequences related to the "symmetric representation of sigma" in A235791 and related sequences, Mar 31 2014. (Start)
The place to start is with A235791, which is very simple. Then go to A237591, also very simple, and A237593, still very simple.
You then need to interpret the rows of A237593 as Dyck paths. This interpretation is in terms of run lengths, so 2,1,1,2 means up twice, down once, up once, and down twice. Because the rows of A237593 are symmetric and of even length, this path will always be symmetric.
Now the surprising fact is that the areas enclosed by the Dyck path for n (laid on its side) always includes the area enclosed for n-1; and the number of squares added is sigma(n).
Finally, look at the connected areas enclosed by n but not by n-1; the size of these areas is the symmetric representation of sigma. (End)
From Hartmut F. W. Hoft, Apr 07 2014: (Start)
The row sum is A235791(n,1) - A235791(n,floor((sqrt(8n+1)-1)/2)+1) = n - 0.
Mathematica function has been written to check the conjecture as well as non-crossing zig-zag paths (Dyck paths rotated by 90 degrees) up through n=30000 (same applies to A237593). (End)
The n-th zig-zag path ending at the point (m, m), where m = A240542(n). - Omar E. Pol, Apr 16 2014
From Omar E. Pol, Aug 23 2015: (Start)
n is an odd prime if and only if T(n,2) = 1 + T(n-1,2) and T(n,k) = T(n-1,k) for the rest of the values of k.
The elements of the n-th row of triangle together with the elements of the n-th row of triangle A261350 give the n-th row of triangle A237593.
T(n,k) is also the area (or the number of cells) of the k-th vertical side at the n-th level (starting from the top) in the left hand part of the front view of the stepped pyramid described in A245092, see Example section.
(End)
From Omar E. Pol, Nov 19 2015: (Start)
T(n,k) is also the number of cells between the k-th and the (k+1)st line segments (from left to right) in the n-th row of the diagram as shown in Example section.
Note that the number of horizontal line segments in the n-th row of the diagram equals A001227(n), the number of odd divisors of n. (End)
Conjecture: the values f(n,k) in the n-th row of the triangle are either 1 or 2 for all k with ceiling((sqrt(4*n+1)-1)/2) <= k <= floor((sqrt(8*n+1)-1)/2) = r(n), the length of the n-th row, though the lower bound need not be minimal; tested through 2500000. See also A285356. - Hartmut F. W. Hoft, Apr 17 2017
Conjecture: T(n,k) is the difference between the total number of partitions of all positive integers <= n into exactly k consecutive parts, and the total number of partitions of all positive integers <= n into exactly k+1 consecutive parts. - Omar E. Pol, Apr 30 2017
From Omar E. Pol, Aug 31 2021: (Start)
It appears that T(n,2)/T(n,1) converges to 1/3.
It appears that T(n,3)/T(n,2) converges to 1/2.
It appears that T(n,4)/T(n,3) converges to 3/5.
It appears that T(n,5)/T(n,4) converges to 2/3. (End)
In other words: T(n,k) is the length of the k-th line segment of the largest Dyck path of the symmetric representation of sigma(n). - Omar E. Pol, Sep 08 2021

Examples

			Triangle begins:
   1;
   2;
   2, 1;
   3, 1;
   3, 2;
   4, 1, 1;
   4, 2, 1;
   5, 2, 1;
   5, 2, 2;
   6, 2, 1, 1;
   6, 3, 1, 1;
   7, 2, 2, 1;
   7, 3, 2, 1;
   8, 3, 1, 2;
   8, 3, 2, 1, 1;
   9, 3, 2, 1, 1;
   9, 4, 2, 1, 1;
  10, 3, 2, 2, 1;
  10, 4, 2, 2, 1;
  11, 4, 2, 1, 2;
  11, 4, 3, 1, 1, 1;
  12, 4, 2, 2, 1, 1;
  12, 5, 2, 2, 1, 1;
  13, 4, 3, 2, 1, 1;
  13, 5, 3, 1, 2, 1;
  14, 5, 2, 2, 2, 1;
  14, 5, 3, 2, 1, 2;
  15, 5, 3, 2, 1, 1, 1;
  ...
For n = 10 the 10th row of triangle A235791 is [10, 4, 2, 1] so row 10 is [6, 2, 1, 1].
From _Omar E. Pol_, Aug 23 2015: (Start)
Illustration of initial terms:
  Row                                                         _
   1                                                        _|1|
   2                                                      _|2 _|
   3                                                    _|2  |1|
   4                                                  _|3   _|1|
   5                                                _|3    |2 _|
   6                                              _|4     _|1|1|
   7                                            _|4      |2  |1|
   8                                          _|5       _|2 _|1|
   9                                        _|5        |2  |2 _|
  10                                      _|6         _|2  |1|1|
  11                                    _|6          |3   _|1|1|
  12                                  _|7           _|2  |2  |1|
  13                                _|7            |3    |2 _|1|
  14                              _|8             _|3   _|1|2 _|
  15                            _|8              |3    |2  |1|1|
  16                          _|9               _|3    |2  |1|1|
  17                        _|9                |4     _|2 _|1|1|
  18                      _|10                _|3    |2  |2  |1|
  19                    _|10                 |4      |2  |2 _|1|
  20                  _|11                  _|4     _|2  |1|2 _|
  21                _|11                   |4      |3   _|1|1|1|
  22              _|12                    _|4      |2  |2  |1|1|
  23            _|12                     |5       _|2  |2  |1|1|
  24          _|13                      _|4      |3    |2 _|1|1|
  25        _|13                       |5        |3   _|1|2  |1|
  26      _|14                        _|5       _|2  |2  |2 _|1|
  27    _|14                         |5        |3    |2  |1|2 _|
  28   |15                           |5        |3    |2  |1|1|1|
  ...
Also the diagram represents the left part of the front view of the pyramid described in A245092. For the other half front view see A261350. For more information about the pyramid and the symmetric representation of sigma see A237593. (End)
From _Omar E. Pol_, Sep 08 2021: (Start)
For n = 12 the symmetric representation of sigma(12) in the fourth quadrant is as shown below:
.                           _
                           | |
                           | |
                           | |
                           | |
                           | |
                      _ _ _| |
                    _|    _ _|
                  _|     |
                 |      _|
                 |  _ _|1
      _ _ _ _ _ _| |  2
     |_ _ _ _ _ _ _|2
            7
.
The lengths of the successive line segments from the first vertex to the central vertex of the largest Dyck path are [7, 2, 2, 1] respectively, the same as the 12th row of triangle. (End)
		

Crossrefs

Row n has length A003056(n) hence column k starts in row A000217(k).
Row sums give A000027.
Column 1 is A008619, n >= 1.
Right border gives A042974.

Programs

  • Mathematica
    row[n_]:= Floor[(Sqrt[8*n+1] -1)/2];  f[n_,k_]:= Ceiling[(n+1)/k-(k+1)/2] - Ceiling[(n+1)/(k+1)-(k+2)/2];
    Table[f[n,k],{n,1,50},{k,1,row[n]}]//Flatten
    (* Hartmut F. W. Hoft, Apr 08 2014 *)
  • PARI
    row235791(n) = vector((sqrtint(8*n+1)-1)\2, i, 1+(n-(i*(i+1)/2))\i);
    row(n) = {my(orow = concat(row235791(n), 0)); vector(#orow -1, i, orow[i] - orow[i+1]);} \\ Michel Marcus, Mar 27 2014
    
  • Python
    from sympy import sqrt
    import math
    def T(n, k): return int(math.ceil((n + 1)/k - (k + 1)/2)) - int(math.ceil((n + 1)/(k + 1) - (k + 2)/2))
    for n in range(1, 29): print([T(n, k) for k in range(1, int((sqrt(8*n + 1) - 1)/2) + 1)]) # Indranil Ghosh, Apr 30 2017

Formula

T(n,k) = ceiling((n+1)/k - (k+1)/2) - ceiling((n+1)/(k+1) - (k+2)/2), for 1 <= n and 1 <= k <= floor((sqrt(8n+1)-1)/2). - Hartmut F. W. Hoft, Apr 07 2014

Extensions

3 more rows added by Omar E. Pol, Aug 23 2015
New name from a comment dated Apr 30 2017. - Omar E. Pol, Jun 18 2023

A235791 Irregular triangle read by rows: T(n,k), n >= 1, k >= 1, in which column k lists k copies of every positive integer in nondecreasing order, and the first element of column k is in row k(k+1)/2.

Original entry on oeis.org

1, 2, 3, 1, 4, 1, 5, 2, 6, 2, 1, 7, 3, 1, 8, 3, 1, 9, 4, 2, 10, 4, 2, 1, 11, 5, 2, 1, 12, 5, 3, 1, 13, 6, 3, 1, 14, 6, 3, 2, 15, 7, 4, 2, 1, 16, 7, 4, 2, 1, 17, 8, 4, 2, 1, 18, 8, 5, 3, 1, 19, 9, 5, 3, 1, 20, 9, 5, 3, 2, 21, 10, 6, 3, 2, 1, 22, 10, 6, 4, 2, 1, 23, 11, 6, 4, 2, 1, 24, 11, 7, 4, 2, 1
Offset: 1

Views

Author

Omar E. Pol, Jan 23 2014

Keywords

Comments

The alternating sum of the squares of the elements of the n-th row equals the sum of all divisors of all positive integers <= n, i.e., Sum_{k=1..A003056(n)} (-1)^(k-1)*(T(n,k))^2 = A024916(n).
Row n has length A003056(n) hence the first element of column k is in row A000217(k).
For more information see A236104.
The sum of row n gives A060831(n), the sum of the number of odd divisors of all positive integers <= n. - Omar E. Pol, Mar 01 2014. [An equivalent assertion is that the sum of row n of A237048 is the number of odd divisors of n, and this was proved by Hartmut F. W. Hoft in a comment in A237048. - N. J. A. Sloane, Dec 07 2020]
Comments from Franklin T. Adams-Watters on sequences related to the "symmetric representation of sigma" in A235791 and related sequences, Mar 31 2014: (Start)
The place to start is with A235791, which is very simple. Then go to A237591, also very simple, and A237593, still very simple.
You then need to interpret the rows of A237593 as Dyck paths. This interpretation is in terms of run lengths, so 2,1,1,2 means up twice, down once, up once, and down twice. Because the rows of A237593 are symmetric and of even length, this path will always be symmetric.
Now the surprising fact is that the areas enclosed by the Dyck path for n (laid on its side) always includes the area enclosed for n-1; and the number of squares added is sigma(n).
Finally, look at the connected areas enclosed by n but not by n-1; the size of these areas is the symmetric representation of sigma. (End)
From Hartmut F. W. Hoft, Apr 07 2014: (Start)
Mathematica function has been written to check the first property up to n = 20000.
T(n,(sqrt(8n+1)-1)/2+1) = 0 for all n >= 1, which is useful for formulas for A237591 and A237593. (End)
Alternating row sums give A240542. - Omar E. Pol, Apr 16 2014
Conjecture: T(n,k) is also the total number of partitions of all positive integers <= n into exactly k consecutive parts, i.e., the partial column sum of A285898, or in accordance with the triangles of the same family: the partial column sum of A237048. - Omar E. Pol, Apr 28 2017, Nov 24 2020
The above conjecture is true. The proof will be added soon (it uses the generating function for the columns). - N. J. A. Sloane, Nov 24 2020
T(n,k) is also the total length of all line segments between the k-th vertex and the central vertex of the largest Dyck path of the symmetric representation of sigma(n). In other words: T(n,k) is the sum of the last (A003056(n)-k+1) terms of the n-th row of A237591. - Omar E. Pol, Sep 07 2021
T(n,k) is also the Manhattan distance between the k-th vertex and the central vertex of the Dyck path described in the n-th row of the triangle A237593. - Omar E. Pol, Jan 11 2023

Examples

			Triangle begins:
   1;
   2;
   3,  1;
   4,  1;
   5,  2;
   6,  2,  1;
   7,  3,  1;
   8,  3,  1;
   9,  4,  2;
  10,  4,  2,  1;
  11,  5,  2,  1;
  12,  5,  3,  1;
  13,  6,  3,  1;
  14,  6,  3,  2;
  15,  7,  4,  2,  1;
  16,  7,  4,  2,  1;
  17,  8,  4,  2,  1;
  18,  8,  5,  3,  1;
  19,  9,  5,  3,  1;
  20,  9,  5,  3,  2;
  21, 10,  6,  3,  2,  1;
  22, 10,  6,  4,  2,  1;
  23, 11,  6,  4,  2,  1;
  24, 11,  7,  4,  2,  1;
  25, 12,  7,  4,  3,  1;
  26, 12,  7,  5,  3,  1;
  27, 13,  8,  5,  3,  2;
  28, 13,  8,  5,  3,  2,  1;
  ...
For n = 10 the 10th row of triangle is 10, 4, 2, 1, so we have that 10^2 - 4^2 + 2^2 - 1^2 = 100 - 16 + 4 - 1 = 87, the same as A024916(10) = 87, the sum of all divisors of all positive integers <= 10.
From _Omar E. Pol_, Nov 19 2015: (Start)
Illustration of initial terms in the third quadrant:
.                                                            y
Row                                                         _|
1                                                         _|1|
2                                                       _|2 _|
3                                                     _|3  |1|
4                                                   _|4   _|1|
5                                                 _|5    |2 _|
6                                               _|6     _|2|1|
7                                             _|7      |3  |1|
8                                           _|8       _|3 _|1|
9                                         _|9        |4  |2 _|
10                                      _|10        _|4  |2|1|
11                                    _|11         |5   _|2|1|
12                                  _|12          _|5  |3  |1|
13                                _|13           |6    |3 _|1|
14                              _|14            _|6   _|3|2 _|
15                            _|15             |7    |4  |2|1|
16                          _|16              _|7    |4  |2|1|
17                        _|17               |8     _|4 _|2|1|
18                      _|18                _|8    |5  |3  |1|
19                    _|19                 |9      |5  |3 _|1|
20                  _|20                  _|9     _|5  |3|2 _|
21                _|21                   |10     |6   _|3|2|1|
22              _|22                    _|10     |6  |4  |2|1|
23            _|23                     |11      _|6  |4  |2|1|
24          _|24                      _|11     |7    |4 _|2|1|
25        _|25                       |12       |7   _|4|3  |1|
26      _|26                        _|12      _|7  |5  |3 _|1|
27    _|27                         |13       |8    |5  |3|2 _|
28   |28                           |13       |8    |5  |3|2|1|
...
T(n,k) is also the number of cells between the k-th vertical line segment (from left to right) and the y-axis in the n-th row of the structure.
Note that the number of horizontal line segments in the n-th row of the structure equals A001227(n), the number of odd divisors of n.
Also the diagram represents the left part of the front view of the pyramid described in A245092. (End)
For more information about the diagram see A286001. - _Omar E. Pol_, Dec 19 2020
From _Omar E. Pol_, Sep 08 2021: (Start)
For n = 12 the symmetric representation of sigma(12) in the fourth quadrant is as shown below:
                            _
                           | |
                           | |
                           | |
                           | |
                           | |
                      _ _ _| |
                    _|    _ _|
                  _|     |
                 |      _|
                 |  _ _|
      _ _ _ _ _ _| |3   1
     |_ _ _ _ _ _ _|
    12              5
.
For n = 12 and k = 1 the total length of all line segments between the first vertex and the central vertex of the largest Dyck path is equal to 12, so T(12,1) = 12.
For n = 12 and k = 2 the total length of all line segments between the second vertex and the central vertex of the largest Dyck path is equal to 5, so T(12,2) = 5.
For n = 12 and k = 3 the total length of all line segments between the third vertex and the central vertex of the largest Dyck path is equal to 3, so T(12,3) = 3.
For n = 12 and k = 4 the total length of all line segments between the fourth vertex and the central vertex of the largest Dyck path is equal to 1, so T(12,4) = 1.
Hence the 12th row of triangle is [12, 5, 3, 1]. (End)
		

Crossrefs

Columns 1..3: A000027, A008619, A008620.
Operations on rows: A003056 (number of terms), A237591 (differences between terms), A060831 (sums), A339577 (products), A240542 (alternating sums), A236104 (squares), A339576 (sums of squares), A024916 (alternating sums of squares), A237048 (differences between rows), A042974 (right border).

Programs

  • Mathematica
    row[n_] := Floor[(Sqrt[8*n + 1] - 1)/2]; f[n_, k_] := Ceiling[(n + 1)/k - (k + 1)/2]; Table[f[n, k], {n, 1, 150}, {k, 1, row[n]}] // Flatten (* Hartmut F. W. Hoft, Apr 07 2014 *)
  • PARI
    row(n) = vector((sqrtint(8*n+1)-1)\2, i, 1+(n-(i*(i+1)/2))\i); \\ Michel Marcus, Mar 27 2014
    
  • Python
    from sympy import sqrt
    import math
    def T(n, k): return int(math.ceil((n + 1)/k - (k + 1)/2))
    for n in range(1, 21): print([T(n, k) for k in range(1, int(math.floor((sqrt(8*n + 1) - 1)/2)) + 1)]) # Indranil Ghosh, Apr 25 2017

Formula

T(n,k) = ceiling((n+1)/k - (k+1)/2) for 1 <= n, 1 <= k <= floor((sqrt(8n+1)-1)/2) = A003056(n). - Hartmut F. W. Hoft, Apr 07 2014
G.f. for column k (k >= 1): x^(k*(k+1)/2)/( (1-x)*(1-x^k) ). - N. J. A. Sloane, Nov 24 2020
T(n,k) = Sum_{j=1..n} A237048(j,k). - Omar E. Pol, May 18 2017
T(n,k) = sqrt(A236104(n,k)). - Omar E. Pol, Feb 14 2018
Sigma(n) = Sum_{k=1..A003056(n)} (-1)^(k-1) * (T(n,k)^2 - T(n-1,k)^2), assuming that T(k*(k+1)/2-1,k) = 0. - Omar E. Pol, Oct 10 2018
a(s(n,k)) = T(n,k), n >= 1, 1 <= k <= r = floor((sqrt(8*n + 1) - 1)/2), where s(n,k) = r*n - r*(r+1)*(r+2)/6 + k translates position (row n, column k) in the triangle of this sequence to its position in the sequence. - Hartmut F. W. Hoft, Feb 24 2021

A067742 Number of middle divisors of n, i.e., divisors in the half-open interval [sqrt(n/2), sqrt(n*2)).

Original entry on oeis.org

1, 1, 0, 1, 0, 2, 0, 1, 1, 0, 0, 2, 0, 0, 2, 1, 0, 1, 0, 2, 0, 0, 0, 2, 1, 0, 0, 2, 0, 2, 0, 1, 0, 0, 2, 1, 0, 0, 0, 2, 0, 2, 0, 0, 2, 0, 0, 2, 1, 1, 0, 0, 0, 2, 0, 2, 0, 0, 0, 2, 0, 0, 2, 1, 0, 2, 0, 0, 0, 2, 0, 3, 0, 0, 0, 0, 2, 0, 0, 2, 1, 0, 0, 2, 0, 0, 0, 2, 0, 2, 2, 0, 0, 0, 0, 2, 0, 1, 2, 1, 0, 0, 0, 2, 0
Offset: 1

Views

Author

Marc LeBrun, Jan 29 2002

Keywords

Comments

Comment from N. J. A. Sloane, Jan 03 2021: (Start)
Theorem 1: (i) a(n) = (number of odd divisors of n <= sqrt(2*n)) - (number of odd divisors of n > sqrt(2*n)).
(ii) Let r(n) = A003056(n). Then a(n) = (number of odd divisors of n <= r(n)) - (number of odd divisors of n > r(n)).
(iii) a(n) = Sum_{k=1..r(n)} (-1)^(k+1)*A237048(n,k).
(iv) a(n) is odd iff n is a square or twice a square (cf. A053866). Indices of odd terms give A028982. Indices of even terms give A028983.
The proofs are straightforward. These results were conjectured by Omar E. Pol in 2017. (End)
Theorem 2: a(n) is equal to the difference between the number of partitions of n into an odd number of consecutive parts and the number of partitions of n into an even number of consecutive parts. [Chapman et al., 2001; Hirschhorn and Hirschhorn, 2005]. - Omar E. Pol, Feb 06 2017
From Omar E. Pol, Feb 06 2017: (Start)
Conjecture 1: This is the central column of the isosceles triangle of A249351.
Conjecture 2: a(n) is also the width of the terrace at the n-th level in the main diagonal of the pyramid described in A245092.
Conjecture 3: a(n) is also the number of central subparts of the symmetric representation of sigma(n). For more information see A279387.
Conjectures 2 and 3 were proposed after Michel Marcus's conjecture in A237593. (End)
Conjectures 1, 2, and 3 are all true. - N. J. A. Sloane, Feb 11 2021

Examples

			a(6)=2 because the 2 middle divisors of 6 (2 and 3) are between sqrt(3) and sqrt(12).
		

References

  • Robin Chapman, Kimmo Eriksson and Richard Stanley, On the Number of Divisors of n in a Special Interval: Problem 10847, Amer. Math. Monthly 108:1 (Jan 2001), p. 77 (Proposal); 109:1 (Jan 2002), p. 80 (Solution). [Please do not delete this reference. - N. J. A. Sloane, Dec 16 2020]

Crossrefs

Cf. A001227, A003056, A028982, A028983, A053866, A067743, A071090 (sums of middle divisors), A082647, A128605, A131576.
Cf. also A071561 (positions of zeros), A071562 (positions of nonzeros), A299761 (middle divisors of n), A355143 (products of middle divisors).
Relation to Dyck paths: A237048, A237593, A240542 (partial sums), A245092, A249351, A279387, A348406.

Programs

  • Mathematica
    (* number of middle divisors *)
    a067742[n_] := Select[Divisors[n], Sqrt[n/2] <= # < Sqrt[2n] &]
    a067742[115] (* data *)
    (* Hartmut F. W. Hoft, Jul 17 2014 *)
    a[ n_] := If[ n < 1, 0, DivisorSum[ n, 1 &, n/2 <= #^2 < 2 n &]]; (* Michael Somos, Jun 04 2015 *)
    (* support function a240542[] is defined in A240542 *)
    b[n_] := a240542[n] - a240542[n-1]
    Map[b,Range[105]] (* data - Hartmut F. W. Hoft, Feb 06 2017 *)
  • PARI
    A067742(n) = {sumdiv(n, d, d2 = d^2; n / 2 < d2 && d2 <= n << 1)} \\ M. F. Hasler, May 12 2008
    
  • PARI
    a(n) = A067742(n) = {my(d = divisors(n), iu = il = #d \ 2); if(#d <= 2, return(n < 3)); while(d[il]^2 > n>>1, il--); while(d[iu]^2 < (n<<1), iu++);
    iu - il - 1 + issquare(n/2)} \\ David A. Corneth, Apr 06 2018
    
  • Python
    from sympy import divisors
    def A067742(n): return sum(1 for d in divisors(n,generator=True) if n <= 2*d**2 < 4*n) # Chai Wah Wu, Jun 09 2022

Formula

G.f.: Sum_{k>=1} (-1)^(k-1)*x^(k*(k+1)/2)/(1-x^k). (This g.f. corresponds to the assertion in Theorem 2.)
Another g.f., corresponding to the definition: Sum_{k>=1} x^(2*k*(k+1))*(1-x^(6*k^2))/(1-x^(2*k)) + Sum_{k>=0} x^((k+1)*(2*k+1))*(1-x^((2*k+1)*(3*k+2)))/(1-x^(2*k+1)). - N. J. A. Sloane, Jan 04 2021
a(A128605(n)) = n and a(m) <> n for m < A128605(n). - Reinhard Zumkeller, Mar 14 2007
It appears that a(n) = A240542(n) - A240542(n-1), the difference between two adjacent Dyck paths as defined in A237593. - Hartmut F. W. Hoft, Feb 06 2017
The above conjecture is essentially the same as Michel Marcus's conjecture in A237593. - Omar E. Pol, Dec 20 2020
Conjecture: a(n) = A082647(n) - A131576(n) = A001227(n) - 2*A131576(n). - Omar E. Pol, Feb 06 2017
a(n) = A348406(n) - 1. - Omar E. Pol, Oct 29 2021
a(n) = A000005(n) - A067743(n). - Omar E. Pol, Jun 11 2022

Extensions

Edited by N. J. A. Sloane, Jan 03 2021

A249351 Triangle read by rows in which row n lists the widths of the symmetric representation of sigma(n).

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1
Offset: 1

Views

Author

Omar E. Pol, Oct 26 2014

Keywords

Comments

Here T(n,k) is defined to be the "k-th width" of the symmetric representation of sigma(n), with n>=1 and 1<=k<=2n-1. Explanation: consider the diagram of the symmetric representation of sigma(n) described in A236104, A237593 and other related sequences. Imagine that the diagram for sigma(n) contains 2n-1 equidistant segments which are parallel to the main diagonal [(0,0),(n,n)] of the quadrant. The segments are located on the diagonal of the cells. The distance between two parallel segment is equal to sqrt(2)/2. T(n,k) is the length of the k-th segment divided by sqrt(2). Note that the triangle contains nonnegative terms because for some n the value of some widths is equal to zero. For an illustration of some widths see Hartmut F. W. Hoft's contribution in the Links section of A237270.
Row n has length 2*n-1.
Row sums give A000203.
If n is a power of 2 then all terms of row n are 1's.
If n is an even perfect number then all terms of row n are 1's except the middle term which is 2.
If n is an odd prime then row n lists (n+1)/2 1's, n-2 zeros, (n+1)/2 1's.
The number of blocks of positive terms in row n gives A237271(n).
The sum of the k-th block of positive terms in row n gives A237270(n,k).
It appears that the middle diagonal is also A067742 (which was conjectured by Michel Marcus in the entry A237593 and checked with two Mathematica functions up to n = 100000 by Hartmut F. W. Hoft).
It appears that the trapezoidal numbers (A165513) are also the numbers k > 1 with the property that some of the noncentral widths of the symmetric representation of sigma(k) are not equal to 1. - Omar E. Pol, Mar 04 2023

Examples

			Triangle begins:
  1;
  1,1,1;
  1,1,0,1,1;
  1,1,1,1,1,1,1;
  1,1,1,0,0,0,1,1,1;
  1,1,1,1,1,2,1,1,1,1,1;
  1,1,1,1,0,0,0,0,0,1,1,1,1;
  1,1,1,1,1,1,1,1,1,1,1,1,1,1,1;
  1,1,1,1,1,0,0,1,1,1,0,0,1,1,1,1,1;
  1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1;
  1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1;
  1,1,1,1,1,1,1,1,1,2,2,2,2,2,1,1,1,1,1,1,1,1,1;
  ...
---------------------------------------------------------------------------
.        Written as an isosceles triangle              Diagram of
.              the sequence begins:               the symmetry of sigma
---------------------------------------------------------------------------
.                                                _ _ _ _ _ _ _ _ _ _ _ _
.                      1;                       |_| | | | | | | | | | | |
.                    1,1,1;                     |_ _|_| | | | | | | | | |
.                  1,1,0,1,1;                   |_ _|  _|_| | | | | | | |
.                1,1,1,1,1,1,1;                 |_ _ _|    _|_| | | | | |
.              1,1,1,0,0,0,1,1,1;               |_ _ _|  _|  _ _|_| | | |
.            1,1,1,1,1,2,1,1,1,1,1;             |_ _ _ _|  _| |  _ _|_| |
.          1,1,1,1,0,0,0,0,0,1,1,1,1;           |_ _ _ _| |_ _|_|    _ _|
.        1,1,1,1,1,1,1,1,1,1,1,1,1,1,1;         |_ _ _ _ _|  _|     |
.      1,1,1,1,1,0,0,1,1,1,0,0,1,1,1,1,1;       |_ _ _ _ _| |      _|
.    1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1,1;     |_ _ _ _ _ _|  _ _|
.  1,1,1,1,1,1,0,0,0,0,0,0,0,0,0,1,1,1,1,1,1;   |_ _ _ _ _ _| |
.1,1,1,1,1,1,1,1,1,2,2,2,2,2,1,1,1,1,1,1,1,1,1; |_ _ _ _ _ _ _|
...
From _Omar E. Pol_, Nov 22 2020: (Start)
Also consider the infinite double-staircases diagram defined in A335616.
For n = 15 the diagram with first 15 levels looks like this:
.
Level                         "Double-staircases" diagram
.                                          _
1                                        _|1|_
2                                      _|1 _ 1|_
3                                    _|1  |1|  1|_
4                                  _|1   _| |_   1|_
5                                _|1    |1 _ 1|    1|_
6                              _|1     _| |1| |_     1|_
7                            _|1      |1  | |  1|      1|_
8                          _|1       _|  _| |_  |_       1|_
9                        _|1        |1  |1 _ 1|  1|        1|_
10                     _|1         _|   | |1| |   |_         1|_
11                   _|1          |1   _| | | |_   1|          1|_
12                 _|1           _|   |1  | |  1|   |_           1|_
13               _|1            |1    |  _| |_  |    1|            1|_
14             _|1             _|    _| |1 _ 1| |_    |_             1|_
15            |1              |1    |1  | |1| |  1|    1|              1|
.
Starting from A196020 and after the algorithm described in A280850 and A296508 applied to the above diagram we have a new diagram as shown below:
.
Level                             "Ziggurat" diagram
.                                          _
6                                         |1|
7                            _            | |            _
8                          _|1|          _| |_          |1|_
9                        _|1  |         |1   1|         |  1|_
10                     _|1    |         |     |         |    1|_
11                   _|1      |        _|     |_        |      1|_
12                 _|1        |       |1       1|       |        1|_
13               _|1          |       |         |       |          1|_
14             _|1            |      _|    _    |_      |            1|_
15            |1              |     |1    |1|    1|     |              1|
.
The 15th row
of this seq:  [1,1,1,1,1,1,1,1,0,0,0,1,1,1,2,1,1,1,0,0,0,1,1,1,1,1,1,1,1]
The 15th row
of A237270:   [              8,            8,            8              ]
The 15th row
of A296508:   [              8,      7,    1,    0,      8              ]
The 15th row
of A280851    [              8,      7,    1,            8              ]
.
The number of horizontal steps (or 1's) in the successive columns of the above diagram gives the 15th row of this triangle.
For more information about the parts of the symmetric representation of sigma(n) see A237270. For more information about the subparts see A239387, A296508, A280851.
More generally, it appears there is the same correspondence between the original diagram of the symmetric representation of sigma(n) and the "Ziggurat" diagram of n. (End)
		

Crossrefs

Programs

  • Mathematica
    (* function segments are defined in A237270 *)
    a249351[n_] := Flatten[Map[segments, Range[n]]]
    a249351[10] (* Hartmut F. W. Hoft, Jul 20 2022 *)

A296508 Irregular triangle read by rows: T(n,k) is the size of the subpart that is adjacent to the k-th peak of the largest Dyck path of the symmetric representation of sigma(n), or T(n,k) = 0 if the mentioned subpart is already associated to a previous peak or if there is no subpart adjacent to the k-th peak, with n >= 1, k >= 1.

Original entry on oeis.org

1, 3, 2, 2, 7, 0, 3, 3, 11, 1, 0, 4, 0, 4, 15, 0, 0, 5, 3, 5, 9, 0, 9, 0, 6, 0, 0, 6, 23, 5, 0, 0, 7, 0, 0, 7, 12, 0, 12, 0, 8, 7, 1, 0, 8, 31, 0, 0, 0, 0, 9, 0, 0, 0, 9, 35, 2, 0, 2, 0, 10, 0, 0, 0, 10, 39, 0, 3, 0, 0, 11, 5, 0, 5, 0, 11, 18, 0, 0, 0, 18, 0, 12, 0, 0, 0, 0, 12, 47, 13, 0, 0, 0, 0, 13, 0, 5, 0, 0, 13
Offset: 1

Views

Author

Omar E. Pol, Feb 10 2018

Keywords

Comments

Conjecture: row n is formed by the odd-indexed terms of the n-th row of triangle A280850 together with the even-indexed terms of the same row but listed in reverse order. Examples: the 15th row of A280850 is [8, 8, 7, 0, 1] so the 15th row of this triangle is [8, 7, 1, 0, 8]. The 75th row of A280850 is [38, 38, 21, 0, 3, 3, 0, 0, 0, 21, 0] so the 75h row of this triangle is [38, 21, 3, 0, 0, 0, 21, 0, 3, 0, 38].
For the definition of "subparts" see A279387.
For more information about the mentioned Dyck paths see A237593.
T(n,k) could be called the "charge" of the k-th peak of the largest Dyck path of the symmetric representation of sigma(n).
The number of zeros in row n is A238005(n). - Omar E. Pol, Sep 11 2021

Examples

			Triangle begins (rows 1..28):
   1;
   3;
   2,  2;
   7,  0;
   3,  3;
  11,  1,  0;
   4,  0,  4;
  15,  0,  0;
   5,  3,  5;
   9,  0,  9,  0;
   6,  0,  0,  6;
  23,  5,  0,  0;
   7,  0,  0,  7;
  12,  0, 12,  0;
   8,  7,  1,  0,  8;
  31,  0,  0,  0,  0;
   9,  0,  0,  0,  9;
  35,  2,  0,  2,  0;
  10,  0,  0,  0, 10;
  39,  0,  3,  0,  0;
  11,  5,  0,  5,  0, 11;
  18,  0,  0,  0, 18,  0;
  12,  0,  0,  0,  0, 12;
  47, 13,  0,  0,  0,  0;
  13,  0,  5,  0,  0, 13;
  21,  0,  0,  0  21,  0;
  14,  6,  0,  6,  0, 14;
  55,  0,  0,  1,  0,  0,  0;
  ...
For n = 15 we have that the 14th row of triangle A237593 is [8, 3, 1, 2, 2, 1, 3, 8] and the 15th row of the same triangle is [8, 3, 2, 1, 1, 1, 1, 2, 3, 8], so the diagram of the symmetric representation of sigma(15) is constructed in the third quadrant as shown below in Figure 1:
.    _                                  _
.   | |                                | |
.   | |                                | |
.   | |                                | |
. 8 | |                                | |
.   | |                                | |
.   | |                                | |
.   | |                                | |
.   |_|_ _ _                           |_|_ _ _
.         | |_ _                      8      | |_ _
.         |_    |                            |_ _  |
.           |_  |_                          7  |_| |_
.          8  |_ _|                           1  |_ _|
.                 |                             0    |
.                 |_ _ _ _ _ _ _ _                   |_ _ _ _ _ _ _ _
.                 |_ _ _ _ _ _ _ _|                  |_ _ _ _ _ _ _ _|
.                         8                         8
.
.   Figure 1. The symmetric            Figure 2. After the dissection
.   representation of sigma(15)        of the symmetric representation
.   has three parts of size 8          of sigma(15) into layers of
.   because every part contains        width 1 we can see four subparts,
.   8 cells, so the 15th row of        so the 15th row of this triangle is
.   triangle A237270 is [8, 8, 8].     [8, 7, 1, 0, 8]. See also below.
.
Illustration of first 50 terms (rows 1..16 of triangle) in an irregular spiral which can be find in the top view of the pyramid described in A244050:
.
.               12 _ _ _ _ _ _ _ _
.                 |  _ _ _ _ _ _ _|_ _ _ _ _ _ _ 7
.                 | |             |_ _ _ _ _ _ _|
.              0 _| |                           |
.               |_ _|9 _ _ _ _ _ _              |_ _ 0
.         12 _ _|     |  _ _ _ _ _|_ _ _ _ _ 5      |_ 0
.    0 _ _ _| |    0 _| |         |_ _ _ _ _|         |
.     |  _ _ _|  9 _|_ _|                   |_ _ 3    |_ _ _ 7
.     | |    0 _ _| |   11 _ _ _ _          |_  |         | |
.     | |     |  _ _|  1 _|  _ _ _|_ _ _ 3    |_|_ _ 5    | |
.     | |     | |    0 _|_| |     |_ _ _|         | |     | |
.     | |     | |     |  _ _|           |_ _ 3    | |     | |
.     | |     | |     | |    3 _ _        | |     | |     | |
.     | |     | |     | |     |  _|_ 1    | |     | |     | |
.    _|_|    _|_|    _|_|    _|_| |_|    _|_|    _|_|    _|_|    _
.   | |     | |     | |     | |         | |     | |     | |     | |
.   | |     | |     | |     |_|_ _     _| |     | |     | |     | |
.   | |     | |     | |    2  |_ _|_ _|  _|     | |     | |     | |
.   | |     | |     |_|_     2    |_ _ _|  0 _ _| |     | |     | |
.   | |     | |    4    |_               7 _|  _ _|0    | |     | |
.   | |     |_|_ _     0  |_ _ _ _        |  _|    _ _ _| |     | |
.   | |    6      |_      |_ _ _ _|_ _ _ _| |  0 _|  _ _ _|0    | |
.   |_|_ _ _     0  |_   4        |_ _ _ _ _|  _|  _| |    _ _ _| |
.  8      | |_ _   0  |                     15|  _|  _|   |  _ _ _|
.         |_ _  |     |_ _ _ _ _ _            | |_ _|  0 _| |      0
.        7  |_| |_    |_ _ _ _ _ _|_ _ _ _ _ _| |    5 _|  _|
.          1  |_ _|  6            |_ _ _ _ _ _ _|  _ _|  _|  0
.            0    |                             23|  _ _|  0
.                 |_ _ _ _ _ _ _ _                | |    0
.                 |_ _ _ _ _ _ _ _|_ _ _ _ _ _ _ _| |
.                8                |_ _ _ _ _ _ _ _ _|
.                                                    31
.
The diagram contains 30 subparts equaling A060831(16), the total number of partitions of all positive integers <= 16 into consecutive parts.
For the construction of the spiral see A239660.
From _Omar E. Pol_, Nov 26 2020: (Start)
Also consider the infinite double-staircases diagram defined in A335616 (see the theorem). For n = 15 the diagram with first 15 levels looks like this:
.
Level                         "Double-staircases" diagram
.                                          _
1                                        _|1|_
2                                      _|1 _ 1|_
3                                    _|1  |1|  1|_
4                                  _|1   _| |_   1|_
5                                _|1    |1 _ 1|    1|_
6                              _|1     _| |1| |_     1|_
7                            _|1      |1  | |  1|      1|_
8                          _|1       _|  _| |_  |_       1|_
9                        _|1        |1  |1 _ 1|  1|        1|_
10                     _|1         _|   | |1| |   |_         1|_
11                   _|1          |1   _| | | |_   1|          1|_
12                 _|1           _|   |1  | |  1|   |_           1|_
13               _|1            |1    |  _| |_  |    1|            1|_
14             _|1             _|    _| |1 _ 1| |_    |_             1|_
15            |1              |1    |1  | |1| |  1|    1|              1|
.
Starting from A196020 and after the algorithm described n A280850 and the conjecture applied to the above diagram we have a new diagram as shown below:
.
Level                             "Ziggurat" diagram
.                                          _
6                                         |1|
7                            _            | |            _
8                          _|1|          _| |_          |1|_
9                        _|1  |         |1   1|         |  1|_
10                     _|1    |         |     |         |    1|_
11                   _|1      |        _|     |_        |      1|_
12                 _|1        |       |1       1|       |        1|_
13               _|1          |       |         |       |          1|_
14             _|1            |      _|    _    |_      |            1|_
15            |1              |     |1    |1|    1|     |              1|
.
The 15th row
of A249351:   [1,1,1,1,1,1,1,1,0,0,0,1,1,1,2,1,1,1,0,0,0,1,1,1,1,1,1,1,1]
The 15th row
of A237270:   [              8,            8,            8              ]
The 15th row
of this seq:  [              8,      7,    1,    0,      8              ]
The 15th row
of A280851:   [              8,      7,    1,            8              ]
.
(End)
		

Crossrefs

Row sums give A000203.
Row n has length A003056(n).
Column k starts in row A000217(k).
Nonzero terms give A280851.
The number of nonzero terms in row n is A001227(n).
The triangle with n rows contain A060831(n) nonzero terms.

A280851 Irregular triangle read by rows in which row n lists the subparts of the symmetric representation of sigma(n), ordered by order of appearance in the structure, from left to right.

Original entry on oeis.org

1, 3, 2, 2, 7, 3, 3, 11, 1, 4, 4, 15, 5, 3, 5, 9, 9, 6, 6, 23, 5, 7, 7, 12, 12, 8, 7, 1, 8, 31, 9, 9, 35, 2, 2, 10, 10, 39, 3, 11, 5, 5, 11, 18, 18, 12, 12, 47, 13, 13, 5, 13, 21, 21, 14, 6, 6, 14, 55, 1, 15, 15, 59, 3, 7, 3, 16, 16, 63, 17, 7, 7, 17, 27, 27, 18, 9, 3, 18, 71, 10, 10, 19, 19, 30, 30
Offset: 1

Views

Author

Omar E. Pol, Jan 09 2017

Keywords

Comments

The terms in the n-th row are the same as the terms in the n-th row of triangle A279391, but in some rows the terms appear in distinct order.
First differs from A279391 at a(28) = T(15,3).
Also nonzero terms of A296508. - Omar E. Pol, Feb 11 2018

Examples

			Triangle begins (rows 1..16):
   1;
   3;
   2,  2;
   7;
   3,  3;
  11,  1;
   4,  4;
  15;
   5,  3,  5;
   9,  9;
   6,  6;
  23,  5;
   7,  7;
  12, 12;
   8,  7,  1,  8;
  31;
...
For n = 12 we have that the 11th row of triangle A237593 is [6, 3, 1, 1, 1, 1, 3, 6] and the 12th row of the same triangle is [7, 2, 2, 1, 1, 2, 2, 7], so the diagram of the symmetric representation of sigma(12) = 28 is constructed as shown below in Figure 1:
.                          _                                    _
.                         | |                                  | |
.                         | |                                  | |
.                         | |                                  | |
.                         | |                                  | |
.                         | |                                  | |
.                    _ _ _| |                             _ _ _| |
.                  _|    _ _|                           _|  _ _ _|
.                _|     |                             _|  _| |
.               |      _|                            |  _|  _|
.               |  _ _|                              | |_ _|
.    _ _ _ _ _ _| |     28                _ _ _ _ _ _| |    5
.   |_ _ _ _ _ _ _|                      |_ _ _ _ _ _ _|
.                                                       23
.
.   Figure 1. The symmetric            Figure 2. After the dissection
.   representation of sigma(12)        of the symmetric representation
.   has only one part which            of sigma(12) into layers of
.   contains 28 cells, so              width 1 we can see two subparts
.   the 12th row of the                that contain 23 and 5 cells
.   triangle A237270 is [28].          respectively, so the 12th row of
.                                      this triangle is [23, 5].
.
For n = 15 we have that the 14th row of triangle A237593 is [8, 3, 1, 2, 2, 1, 3, 8] and the 15th row of the same triangle is [8, 3, 2, 1, 1, 1, 1, 2, 3, 8], so the diagram of the symmetric representation of sigma(15) = 24 is constructed as shown below in Figure 3:
.                                _                                  _
.                               | |                                | |
.                               | |                                | |
.                               | |                                | |
.                               | |                                | |
.                               | |                                | |
.                               | |                                | |
.                               | |                                | |
.                          _ _ _|_|                           _ _ _|_|
.                      _ _| |      8                      _ _| |      8
.                     |    _|                            |  _ _|
.                    _|  _|                             _| |_|
.                   |_ _|  8                           |_ _|  1
.                   |                                  |    7
.    _ _ _ _ _ _ _ _|                   _ _ _ _ _ _ _ _|
.   |_ _ _ _ _ _ _ _|                  |_ _ _ _ _ _ _ _|
.                    8                                  8
.
.   Figure 3. The symmetric            Figure 4. After the dissection
.   representation of sigma(15)        of the symmetric representation
.   has three parts of size 8          of sigma(15) into layers of
.   because every part contains        width 1 we can see four "subparts".
.   8 cells, so the 15th row of        The first layer has three subparts:
.   triangle A237270 is [8, 8, 8].     [8, 7, 8]. The second layer has
.                                      only one subpart of size 1. The
.                                      15th row of this triangle is
.                                      [8, 7, 1, 8].
.
From _Hartmut F. W. Hoft_, Jan 31 2018: (Start)
The subparts of 36 whose symmetric representation of sigma has maximum width 2 are 71, 10, and 10.
The (size, width level) pairs of the six subparts of the symmetric representation of sigma(63) which consists of five parts are (32,1), (12,1), (11,1), (5,2), (12,1), and (32,1).
The subparts of perfect number 496 are 991, the length of its entire Dyck path, and 1 at the diagonal.
Number 10080, the smallest number whose symmetric representation of sigma has maximum width 10 (see A250070), has 12 subparts; its (size, width level) pairs are (20159,1), (6717,2), (4027,3), (2873,4), (2231,5), (1329,6), (939,7), (541,8), (403,9), (3,10), (87,10), and (3,10). The size of the first subpart is the length of the entire Dyck path so that the symmetric representation consists of a single part. The first subpart at the 10th level occurs at coordinates (6926,7055) ... (6929,7055). (End)
From _Omar E. Pol_, Dec 26 2020: (Start)
Also consider the infinite double-staircases diagram defined in A335616 (see the theorem).
For n = 15 the diagram with first 15 levels looks like this:
.
Level                         "Double-staircases" diagram
.                                          _
1                                        _|1|_
2                                      _|1 _ 1|_
3                                    _|1  |1|  1|_
4                                  _|1   _| |_   1|_
5                                _|1    |1 _ 1|    1|_
6                              _|1     _| |1| |_     1|_
7                            _|1      |1  | |  1|      1|_
8                          _|1       _|  _| |_  |_       1|_
9                        _|1        |1  |1 _ 1|  1|        1|_
10                     _|1         _|   | |1| |   |_         1|_
11                   _|1          |1   _| | | |_   1|          1|_
12                 _|1           _|   |1  | |  1|   |_           1|_
13               _|1            |1    |  _| |_  |    1|            1|_
14             _|1             _|    _| |1 _ 1| |_    |_             1|_
15            |1              |1    |1  | |1| |  1|    1|              1|
.
Starting from A196020 and after the algorithm described in A280850 and A296508 applied to the above diagram we have a new diagram as shown below:
.
Level                             "Ziggurat" diagram
.                                          _
6                                         |1|
7                            _            | |            _
8                          _|1|          _| |_          |1|_
9                        _|1  |         |1   1|         |  1|_
10                     _|1    |         |     |         |    1|_
11                   _|1      |        _|     |_        |      1|_
12                 _|1        |       |1       1|       |        1|_
13               _|1          |       |         |       |          1|_
14             _|1            |      _|    _    |_      |            1|_
15            |1              |     |1    |1|    1|     |              1|
.
The 15th row
of A249351 :  [1,1,1,1,1,1,1,1,0,0,0,1,1,1,2,1,1,1,0,0,0,1,1,1,1,1,1,1,1]
The 15th row
of A237270:   [              8,            8,            8              ]
The 15th row
of A296508:   [              8,      7,    1,    0,      8              ]
The 15th row
of triangle   [              8,      7,    1,            8              ]
.
More generally, for n >= 1, it appears there is the same correspondence between the original diagram of the symmetric representation of sigma(n) and the "Ziggurat" diagram of n.
For the definition of subparts see A279387 and also A296508. (End)
		

Crossrefs

Row sums give A000203.
The length of row n equals A001227(n).
Hence, if n is odd the length of row n equals A000005(n).
For the definition of "subparts" see A279387.
For the triangle of sums of subparts see A279388.

Programs

  • Mathematica
    row[n_] := Floor[(Sqrt[8n+1]-1)/2]
    f[n_] := Map[Ceiling[(n+1)/#-(#+1)/2] - Ceiling[(n+1)/(#+1)-(#+2)/2]&, Range[row[n]]]
    a237593[n_] := Module[{a=f[n]}, Join[a, Reverse[a]]]
    g[n_] := Map[If[Mod[n - #*(#+1)/2, #]==0, (-1)^(#+1), 0]&, Range[row[n]]]
    a262045[n_] := Module[{a=Accumulate[g[n]]}, Join[a, Reverse[a]]]
    findStart[list_] := Module[{i=1}, While[list[[i]]==0, i++]; i]
    a280851[n_] := Module[{lenL=a237593[n], widL=a262045[n], r=row[n], subs={}, acc, start, i}, While[!AllTrue[widL, #==0&], start=findStart[widL]; acc=lenL[[start]]; widL[[start]]-=1; i=start+1; While[i<=2*r && acc!=0, If[widL[[i]]==0, If[start<=r2*r && acc!=0, If[start<=r2] (* triangle *) (* Hartmut F. W. Hoft, Jan 31 2018 *)

Extensions

Name clarified by Hartmut F. W. Hoft and Omar E. Pol, Jan 31 2018

A281007 Number of middle divisors of the n-th number that has middle divisors.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 2, 2, 1, 1, 2, 2, 1, 2, 2, 1, 2, 1, 2, 2, 2, 2, 1, 1, 2, 2, 2, 2, 1, 2, 2, 3, 2, 2, 1, 2, 2, 2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 2, 4, 1, 2, 1, 2, 2, 2, 2, 2, 3, 2, 2, 2, 2, 2, 1, 2, 2, 1, 2, 2, 4, 2, 2, 2, 2, 2, 1, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 4, 1, 2, 4, 2, 1, 2, 2, 2, 2, 2, 2, 2, 2
Offset: 1

Views

Author

Omar E. Pol, Feb 11 2017

Keywords

Comments

Conjecture 1: also widths of the successive terraces that we can find descending by the main diagonal of the pyramid described in A245092. Hence, bisection of A281012.
Conjecture 2: also number of central subparts in the symmetric representation of sigma of the numbers j that have the property that the number of parts in the symmetric representation of sigma(j) is odd.
Conjecture 3: Partial sums give A282131.

Crossrefs

Programs

  • Mathematica
    DeleteCases[#, 0] &@ Table[Count[Divisors@ n, d_ /; Sqrt[n/2] <= d < Sqrt[2 n]], {n, 300}] (* Michael De Vlieger, Feb 12 2017 *)

Formula

a(n) = A067742(A071562(n)).
Showing 1-10 of 56 results. Next