cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A241204 Expansion of (1 + 2*x)^2/(1 - 2*x)^2.

Original entry on oeis.org

1, 8, 32, 96, 256, 640, 1536, 3584, 8192, 18432, 40960, 90112, 196608, 425984, 917504, 1966080, 4194304, 8912896, 18874368, 39845888, 83886080, 176160768, 369098752, 771751936, 1610612736, 3355443200, 6979321856, 14495514624, 30064771072, 62277025792
Offset: 0

Views

Author

Keywords

Crossrefs

Subsequence of A008574.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 41); Coefficients(R!((1+2*x)^2/(1-2*x)^2));
    
  • Maple
    A241204:= n->`if`(n=0, 1, 2^(n+2)*n); seq(A241204(n), n=0..20); # Wesley Ivan Hurt, Apr 22 2014
  • Mathematica
    Table[2^(n+2)*n + Boole[n==0], {n,0,40}] (* G. C. Greubel, Jun 07 2023 *)
    LinearRecurrence[{4,-4},{1,8,32},30] (* Harvey P. Dale, Jun 23 2025 *)
  • PARI
    Vec((2*x+1)^2/(2*x-1)^2 + O(x^100)) \\ Colin Barker, Apr 22 2014
    
  • Sage
    def A241204(i):
        if i==0: return 1
        else: return 2^(2+i)*i;
    [A241204(n) for n in (0..30)] # Bruno Berselli, Apr 23 2014

Formula

a(n) = 2^(2+n)*n for n>0. - Colin Barker, Apr 23 2014
a(n) = 4*a(n-1)-4*a(n-2) for n>2. - Colin Barker, Apr 23 2014
From Amiram Eldar, Jan 13 2021: (Start)
Sum_{n>=1} 1/a(n) = log(2)/4.
Sum_{n>=1} (-1)^(n+1)/a(n) = log(3/2)/4. (End)
E.g.f.: 1 + 8*x*exp(x). - G. C. Greubel, Jun 07 2023