A242824
Primes formed by the initial digits of the decimal expansion of 1/7, starting at the first nonzero digit in the expansion.
Original entry on oeis.org
1428571, 1428571428571428571428571
Offset: 1
-
Select[Table[FromDigits[PadRight[{},6n+1,{1,4,2,8,5,7}]],{n,200}],PrimeQ](* Harvey P. Dale, Oct 03 2018 *)
A343915
a(n) = floor(((n mod 6)+1) * 10^floor((n/6)+1) / 7).
Original entry on oeis.org
1, 2, 4, 5, 7, 8, 14, 28, 42, 57, 71, 85, 142, 285, 428, 571, 714, 857, 1428, 2857, 4285, 5714, 7142, 8571, 14285, 28571, 42857, 57142, 71428, 85714, 142857, 285714, 428571, 571428, 714285, 857142, 1428571, 2857142, 4285714, 5714285, 7142857, 8571428, 14285714
Offset: 0
Every 6th term of the sequence starts with the same digits:
1, 2, 4, 5, 7, 8,
14, 28, 42, 57, 71, 85,
142, 285, 428, 571, 714, 857,
1428, 2857, 4285, 5714, 7142, 8571,
14285, 28571, 42857, 57142, 71428, 85714,
142857, 285714, 428571, 571428, 714285, 857142,
1428571, 2857142, 4285714, 5714285, 7142857, 8571428,
14285714, 28571428, 42857142, 57142857, 71428571, 85714285,
...
A369562
Smallest positive n-digit number divisible by 7.
Original entry on oeis.org
7, 14, 105, 1001, 10003, 100002, 1000006, 10000004, 100000005, 1000000001, 10000000003, 100000000002, 1000000000006, 10000000000004, 100000000000005, 1000000000000001, 10000000000000003, 100000000000000002, 1000000000000000006, 10000000000000000004, 100000000000000000005
Offset: 1
-
a[n_] := 10^(n - 1) + {6, 4, 5, 1, 3, 2}[[Mod[n, 6, 1]]]; Array[a, 30]
(* or *)
LinearRecurrence[{11, -10, -1, 11, -10}, {7, 14, 105, 1001, 10003, 100002}, 30] (* Amiram Eldar, Jan 27 2024 *)
Table[10^n+7-PowerMod[10,n,7],{n,0,20}] (* Harvey P. Dale, Jan 13 2025 *)
Showing 1-3 of 3 results.
Comments