A078686
Primes prime(k) such that 2^k - prime(k) is also prime.
Original entry on oeis.org
5, 31, 67, 89, 101, 283, 503, 1039, 1129, 2069, 3457, 5641, 45763, 71483, 86599, 112921, 161411, 210173, 211007, 232741, 245269, 479029, 1078589
Offset: 1
a(1)=5 since 5 is the third prime number and 2^3-5 = 3 is prime. - _Robert G. Wilson v_, Jul 06 2014
-
p = 2; lst = {}; While[p < 760001, If[ PrimeQ[ 2^PrimePi@ p - p], AppendTo[lst, p]; Print@ p]; p = NextPrime@ p]; lst (* Robert G. Wilson v, Jul 06 2014 *)
Select[Table[{n,Prime[n]},{n,40000}],PrimeQ[2^#[[1]]-#[[2]]]&][[All,2]] (* Harvey P. Dale, Feb 19 2020 *)
A077375
Numbers k such that 2^k + prime(k) is prime.
Original entry on oeis.org
2, 3, 4, 5, 12, 13, 14, 23, 57, 106, 226, 227, 311, 373, 1046, 1298, 1787, 1952, 2130, 2285, 2670, 3254, 3642, 4369, 13559, 33418, 66830, 213810
Offset: 1
2^12 + prime(12) = 4096 + 43 = 4139 is a prime, so 12 is a term.
Corresponding prime(k) are in
A242944.
A227126
Primes prime(k) such that 2^(k+1) - prime(k) is also prime.
Original entry on oeis.org
2, 3, 5, 11, 17, 167, 193, 197, 433, 4111, 9173, 42929, 95279, 98897, 139409, 142567, 228617, 329333, 344209, 791191, 829177, 1274509, 1284037, 2432791, 2443741
Offset: 1
5 is a term because 5 is the 3rd prime, and 2^(3+1) - 5 = 16 - 5 = 11 which is a prime
11 is in the sequence because 11 = prime(5) and 2^(5 + 1) - 11 = 64 - 11 = 53 is a prime.
-
p = 2; lst = {}; While[p < 850001, If[ PrimeQ[ 2^(PrimePi@ p +1) - p], AppendTo[lst, p]; Print@ p]; p = NextPrime@ p]; lst (* Robert G. Wilson v, Jul 09 2014 *)
-
lista(nn) = {ip = 1; forprime(p=2, nn, if (isprime(2^(ip+1)-p), print1(p, ", ")); ip++;);} \\ Michel Marcus, Jul 12 2014
A228021
Prime(k) such that 2^(k - 1) + prime(k) is also prime.
Original entry on oeis.org
2, 3, 29, 89, 251, 659, 937, 1307, 1453, 8179, 9391, 12097, 28499, 83969, 101209, 120739, 730993
Offset: 1
29 is in the sequence because 29 = prime(10) and 2^(10 - 1) + 29 = 512 + 29 = 541 is prime.
-
for i from 1 do
p := ithprime(i) ;
if isprime(p+2^(i-1)) then
printf("%d,\n",p) ;
end if;
end do: # R. J. Mathar, Jul 12 2014
-
p = 2; lst = {}; While[p < 730001, If[ PrimeQ[ 2^(PrimePi@ p-1) + p], AppendTo[lst, p]; Print@ p]; p = NextPrime@ p]; lst (* Robert G. Wilson v, Jul 09 2014 *)
-
lista(nn) = {ip = 1; forprime(p=2, nn, if (isprime(2^(ip-1)+p), print1(p, ", ")); ip++;);} \\ Michel Marcus, Jul 12 2014
A244916
Primes prime(k) such that 2^(k+1) + prime(k) is also prime.
Original entry on oeis.org
3, 31, 71, 97, 107, 277, 307, 641, 907, 967, 1009, 1447, 3463, 3527, 7757, 8167, 250867, 279047, 1107791, 1176671, 1538399, 1594909, 2450017
Offset: 1
-
for i from 1 do
p := ithprime(i) ;
if isprime(p+2^(i+1)) then
printf("%d,\n",p) ;
end if;
end do: # R. J. Mathar, Jul 12 2014
-
p = 2; lst = {}; While[p < 900000, If[ PrimeQ[ 2^(PrimePi@ p +1) + p], AppendTo[lst, p]; Print@ p]; p = NextPrime@ p]; lst
-
lista(nn) = {ip = 1; forprime(p=2, nn, if (isprime(2^(ip+1)+p), print1(p, ", ")); ip++;);} \\ Michel Marcus, Jul 12 2014
Showing 1-5 of 5 results.
Comments