cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A242959 Numbers n such that 5^A000010(n) == 1 (mod n^2).

Original entry on oeis.org

2, 20771, 40487, 41542, 80974, 83084, 161948, 643901, 1255097, 1287802, 1391657, 1931703, 2510194, 2575604, 2783314, 3765291, 3863406, 4174971, 5020388, 5151208, 5566628, 7530582, 7726812, 8349942, 10040776, 11133256, 15061164, 15308227, 15453624, 16699884
Offset: 1

Views

Author

Felix Fröhlich, May 27 2014

Keywords

Crossrefs

If a(n) is prime, then a(n) is in A123692.

Programs

  • Mathematica
    Select[Range[167*10^5],PowerMod[5,EulerPhi[#],#^2]==1&] (* Harvey P. Dale, Jun 02 2020 *)
  • PARI
    for(n=2, 10^9, if(Mod(5, n^2)^(eulerphi(n))==1, print1(n, ", ")))

A242958 Numbers n such that 3^phi(n) == 1 (mod n^2), where phi(n) is Euler's totient function.

Original entry on oeis.org

11, 22, 44, 55, 110, 220, 440, 880, 1006003, 2012006, 4024012, 11066033, 22132066, 44264132, 55330165, 88528264, 110660330, 221320660, 442641320, 885282640, 1770565280, 56224501667, 112449003334, 224898006668, 393571511669, 449796013336, 618469518337, 787143023338
Offset: 1

Views

Author

Felix Fröhlich, May 27 2014

Keywords

Comments

a(21) > 10^9.
All listed composite terms are multiples of the two known primes in this sequence, 11 and 1006003, the only known base 3 Wieferich primes.

Crossrefs

Programs

  • Mathematica
    Select[Range[1000], Mod[3^EulerPhi[#], #^2] == 1 &] (* Alonso del Arte, Jun 02 2014 *)
  • PARI
    for(n=2, 10^9, if(Mod(3, n^2)^(eulerphi(n))==1, print1(n, ", ")))

Extensions

Terms a(21) and beyond from Giovanni Resta, Jan 27 2020

A245529 Numbers n such that 12^phi(n) == 1 (mod n^2), where phi(n) is Euler's totient function.

Original entry on oeis.org

2693, 123653, 1812389, 2349407, 12686723, 201183431, 332997529, 3822485189, 6326953051, 54520709801, 224107337017, 272603549005, 541786979683, 1035893486219, 1568751359119, 4258039403323, 5179467431095, 10293952613977, 29806275823261
Offset: 1

Views

Author

Felix Fröhlich, Jul 25 2014

Keywords

Comments

a(8) > 10^9.
If a(n) is prime, it is in A111027.
a(20) > 10^14. - Giovanni Resta, Jan 27 2020

Crossrefs

Programs

  • Maple
    with(numtheory): A245529:=n->`if`( (12 &^ phi(n)-1) mod n^2 = 0, n, NULL): seq(A245529(n), n=2..10^4); # Wesley Ivan Hurt, Jul 26 2014
  • Mathematica
    Select[Range[10^5], PowerMod[12, EulerPhi[#], #^2] == 1 &] (* Alonso del Arte, Jul 27 2014 *)
  • PARI
    for(n=2, 1e9, if(Mod(12, n^2)^(eulerphi(n))==1, print1(n, ", ")))

Extensions

a(8)-a(12) from Giovanni Resta, Jan 24 2020
a(13)-a(19) from Giovanni Resta, Jan 27 2020

A241977 Numbers k>1 such that 10^phi(k) == 1 (mod k^2), where phi(n)=A000010(n).

Original entry on oeis.org

3, 487, 1461, 4383, 13149, 39447, 118341, 355023, 56598313, 169794939, 509384817, 1754547703, 5263643109, 7187985751, 15790929327, 21563957253, 27563378431, 33902389487, 47372787981, 50315900257, 64691871759, 82690135293, 101707168461, 150947700771
Offset: 1

Views

Author

Felix Fröhlich, Aug 10 2014

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[400000], PowerMod[10, EulerPhi[#], #^2] == 1 &] (* Amiram Eldar, Oct 16 2023 *)
  • PARI
    for(n=2, 1e9, if(Mod(10, n^2)^(eulerphi(n))==1, print1(n, ", ")))

Extensions

Terms a(12) and beyond from Giovanni Resta, Jan 24 2020

A241978 Numbers n such that 6^phi(n) == 1 (modulo n^2), where phi(n) is Euler's totient function.

Original entry on oeis.org

66161, 330805, 534851, 2674255, 3152573, 10162169, 13371275, 50810845, 54715147, 129255493, 148170931, 254054225, 273575735, 301121113, 383006029, 646277465, 1289402357, 1505605565, 1915030145, 3228193673, 3407931413, 5721301147, 6075008171, 7528027825
Offset: 1

Views

Author

Felix Fröhlich, Aug 10 2014

Keywords

Comments

a(17) > 10^9.

Crossrefs

Programs

  • Mathematica
    Select[Range[65*10^7],PowerMod[6,EulerPhi[#],#^2]==1&] (* Harvey P. Dale, Jan 20 2020 *)
  • PARI
    for(n=2, 1e9, if(Mod(6, n^2)^(eulerphi(n))==1, print1(n, ", ")))

Extensions

Terms a(17) and beyond from Giovanni Resta, Jan 24 2020

A253016 Numbers k such that 11^phi(k) == 1 (mod k^2), where phi(k) = A000010(k).

Original entry on oeis.org

71, 142, 284, 355, 497, 710, 994, 1420, 1491, 1988, 2485, 2840, 2982, 3976, 4970, 5680, 5964, 7455, 9940, 11928, 14910, 19880, 23856, 29820, 39760, 59640, 79520, 119280, 238560, 477120
Offset: 1

Views

Author

Felix Fröhlich, Dec 26 2014

Keywords

Comments

No further terms up to 10^9.
No more terms less than 10^10. - Robert G. Wilson v, Jan 18 2015
The first 30 terms are divisible by 71. Are there any terms not divisible by 71? - Robert Israel, Dec 30 2014
By Corollary 5.9 in Agoh, Dilcher, Skula (1997), if there are no further Wieferich primes to base 11 apart from 71, then the answer is no. - Felix Fröhlich, Dec 30 2014

Crossrefs

Programs

  • Maple
    select(t -> 11 &^ numtheory:-phi(t) mod t^2 = 1, [$1..10^6]); # Robert Israel, Dec 30 2014
  • Mathematica
    a253016[n_] := Select[Range[n], PowerMod[11,EulerPhi[#], #^2] == 1 &]; a253016[500000] (* Michael De Vlieger, Dec 29 2014; modified by Robert G. Wilson v, Jan 18 2015 *)
  • PARI
    for(n=2, 1e9, if(Mod(11, n^2)^(eulerphi(n))==1, print1(n, ", ")))

A247154 a(n) = smallest composite c such that n^(A000010(c)) == 1 (mod c^2), i.e., smallest composite Wieferich number to base n.

Original entry on oeis.org

4, 3279, 22, 3279, 41542, 330805, 4, 3279, 4, 1461, 142, 1812389, 1726, 3883, 4, 3279, 4, 35, 6, 1967
Offset: 1

Views

Author

Felix Fröhlich, Nov 21 2014

Keywords

Comments

a(21) > 10^9
a(22)-a(28): 39, 4, 128165, 4, 9, 22, 9
a(29) > 10^9
a(30)-a(33): 1123787, 4, 3279, 4
a(34) > 10^9

Crossrefs

Programs

  • PARI
    for(n=1, 20, forcomposite(c=1, 1e9, if(Mod(n, c^2)^(eulerphi(c))==1, print1(c, ", "); next({2}))); print1("--, "))

A250206 Least base b > 1 such that b^A000010(n) = 1 (mod n^2).

Original entry on oeis.org

2, 5, 8, 7, 7, 17, 18, 15, 26, 7, 3, 17, 19, 19, 26, 31, 38, 53, 28, 7, 19, 3, 28, 17, 57, 19, 80, 19, 14, 107, 115, 63, 118, 65, 18, 53, 18, 69, 19, 7, 51, 19, 19, 3, 26, 63, 53, 17, 18, 57, 134, 19, 338, 161, 3, 31, 28, 41, 53, 107, 264, 115, 19, 127, 99, 161, 143, 65, 28, 99, 11, 55
Offset: 1

Views

Author

Eric Chen, Feb 21 2015

Keywords

Comments

a(n) = least base b > 1 such that n is a Wieferich number (see A077816).
At least, b = n^2+1 can satisfy this equation, so a(n) is defined for all n.
Least Wieferich number (>1) to base n: 2, 1093, 11, 1093, 2, 66161, 4, 3, 2, 3, 71, 2693, 2, 29, 4, 1093, 2, 5, 3, 281, 2, 13, 4, 5, 2, ...; each is a prime or 4. It is 4 if and only if n mod 72 is in the set {7, 15, 23, 31, 39, 47, 63}.
Does every natural number (>1) appear in this sequence? If yes, do they appear infinitely many times?
For prime n, a(n) = A185103(n), does there exist any composite n such that a(n) = A185103(n)?

Examples

			a(30) = 107 since A000010(30) = 8, 30^2 = 900, and 107 is the least base b > 1 such that b^8 = 1 (mod 900).
		

Crossrefs

Programs

  • Mathematica
    f[n_] := Block[{b = 2, m = EulerPhi[n]}, While[ PowerMod[b, m, n^2] != 1, b++]; b]; f[1] = 2; Array[f, 72] (* Robert G. Wilson v, Feb 28 2015 *)
  • PARI
    a(n)=for(k=2,2^24,if((k^eulerphi(n))%(n^2)==1, return(k)))

Formula

a(prime(n)) = A039678(n) = A185103(prime(n)).
a(A077816(n)) = 2.
a(A242958(n)) <= 3.

A257660 Numbers n such that 13^phi(n) == 1 (mod n^2), where phi(n) = A000010(n).

Original entry on oeis.org

2, 863, 1726, 3452, 371953, 743906, 1487812, 1747591, 1859765, 2975624, 3495182, 3719530, 5242773, 6990364, 7439060, 8737955, 10485546, 14878120, 15993979, 17475910, 20971092, 26213865, 29756240, 31987958, 34951820, 41942184, 47981937, 52427730, 59512480
Offset: 1

Views

Author

Felix Fröhlich, Jul 26 2015

Keywords

Comments

The subsequence of primes in this sequence is A128667.

Crossrefs

Programs

  • Mathematica
    Select[Range@ 1000000, Mod[13^EulerPhi[#], #^2] == 1 &] (* Michael De Vlieger, Jul 27 2015 *)
  • PARI
    for(n=2, 1e9, if(Mod(13, n^2)^(eulerphi(n))==1, print1(n, ", ")))
Showing 1-9 of 9 results.