cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 30 results. Next

A074962 Decimal expansion of Glaisher-Kinkelin constant A.

Original entry on oeis.org

1, 2, 8, 2, 4, 2, 7, 1, 2, 9, 1, 0, 0, 6, 2, 2, 6, 3, 6, 8, 7, 5, 3, 4, 2, 5, 6, 8, 8, 6, 9, 7, 9, 1, 7, 2, 7, 7, 6, 7, 6, 8, 8, 9, 2, 7, 3, 2, 5, 0, 0, 1, 1, 9, 2, 0, 6, 3, 7, 4, 0, 0, 2, 1, 7, 4, 0, 4, 0, 6, 3, 0, 8, 8, 5, 8, 8, 2, 6, 4, 6, 1, 1, 2, 9, 7, 3, 6, 4, 9, 1, 9, 5, 8, 2, 0, 2, 3, 7, 4, 3, 9, 4, 2, 0, 6, 4, 6, 1, 2, 0
Offset: 1

Views

Author

Benoit Cloitre, Oct 05 2002

Keywords

Comments

Arises in expressions such as A002109(n) = 1^1*2^2*3^3*...*n^n which is asymptotic to A*n^(n^2/2 + n/2 + 1/12)*exp(-n^2/4). See A002109 for more references and links.
Named after the English mathematician and astronomer James Whitbread Lee Glaisher (1848-1928) and the Swiss mathematician Hermann Kinkelin (1832-1913). - Amiram Eldar, Jun 15 2021

Examples

			1.2824271291006226368753425688697917277676889273250011920637400217404...
		

References

  • Steven R. Finch, Mathematical constants, Encyclopedia of Mathematics and its Applications, Vol. 94, Cambridge University Press, 2003, p. 135.
  • Konrad Knopp, Theory and applications of infinite series, Dover, p. 555.

Crossrefs

Programs

  • Maple
    evalf(limit(product(k^k,k=1..n)/(n^(n^2/2+n/2+1/12)*exp(-n^2/4)),n=infinity),120); # Vaclav Kotesovec, Oct 23 2014
  • Mathematica
    RealDigits[Glaisher, 10, 111][[1]] (* Robert G. Wilson v *)
  • PARI
    x=10^(-100); exp(1/12-(zeta(-1+x)-zeta(-1))/x)
    
  • PARI
    exp(1/12-zeta'(-1)) \\ Charles R Greathouse IV, Dec 12 2013

Formula

A = 2^(1/36)*Pi^(1/6)*exp(1/3*(-Gamma/4 + s(2)/3 - s(3)/4 + ...)) where s(k) denotes Sum_{n>=0} 1/(2n+1)^k.
Closed expressions for A are exp(-zeta'(2)/2/Pi^2 + log(2*Pi)/12 + Gamma/12) or exp(1/12-zeta'(-1)).
Equals (2*Pi)^(1/4) / limit_{n->oo} Product_{k=1..n} Gamma(k/n)^(k/n^2). - Vaclav Kotesovec, Dec 02 2023
Equals (2*Pi*exp(gamma) * Product_{p prime} p^(1/(p^4-1)))^c, where gamma is Euler's constant (A001620), and c = Bernoulli(2)/2 = 1/12 (Van Gorder, 2012). - Amiram Eldar, Feb 08 2024
Equals e^(-1/4 + Integral_{x=1..2} x*log(sqrt(2*Pi)) - B_2(x) + x^2*Psi(x)/2 dx), where B_2(x) is the second Bernoulli polynomial and Psi(x) is the digamma function. - Andrea Pinos, Apr 16 2024
Equals exp(1/12 - 2*Integral_{x=0..oo} x*log(x)/(exp(2*Pi*x) - 1) dx) = exp(1/3 + 7*log(2)/36 - log(Pi)/6 + (2/3)*Integral_{x=0..1/2} log(Gamma(x+1)) dx) (see Finch). - Stefano Spezia, Dec 01 2024
From Antonio Graciá Llorente, May 03 2025: (Start)
Equals lim_{n->oo} (2^(13/3)*n)^(1/12) * Product_{k=1..n} (1 - 1/(2*k+1)^2)^((2*k+1)/6).
Equals lim_{n->oo} (24*n^2)^(1/24) * Product_{prime p<=n} (p^(1 - p/(p^2-1)) / sqrt(p^2-1))^(1/12). (End)

Extensions

More terms from Sascha Kurz, Feb 03 2003

A243262 Decimal expansion of the generalized Glaisher-Kinkelin constant A(2).

Original entry on oeis.org

1, 0, 3, 0, 9, 1, 6, 7, 5, 2, 1, 9, 7, 3, 9, 2, 1, 1, 4, 1, 9, 3, 3, 1, 3, 0, 9, 6, 4, 6, 6, 9, 4, 2, 2, 9, 0, 6, 3, 3, 1, 9, 4, 3, 0, 6, 4, 0, 3, 4, 8, 7, 0, 6, 0, 2, 2, 7, 2, 6, 1, 7, 4, 1, 1, 4, 5, 1, 6, 6, 0, 6, 6, 9, 7, 8, 2, 9, 0, 4, 0, 5, 2, 9, 2, 9, 3, 1, 3, 6, 2, 5, 5, 4, 8, 0, 8, 8, 5
Offset: 1

Views

Author

Jean-François Alcover, Jun 02 2014

Keywords

Comments

Also known as the second Bendersky constant.
This is likely the same as the constant B considered in section 3 of the Choi and Srivastava link. - R. J. Mathar, Oct 03 2016

Examples

			1.03091675219739211419331309646694229...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.15 Glaisher-Kinkelin constant, p. 137.

Crossrefs

Programs

  • Mathematica
    RealDigits[Exp[Zeta[3]/(4*Pi^2)], 10, 99] // First
    RealDigits[Exp[N[(BernoulliB[2]/4)*(Zeta[3]/Zeta[2]), 200]]]//First (* G. C. Greubel, Dec 31 2015 *)
  • PARI
    exp(zeta(3)/(4*Pi^2)) \\ Felix Fröhlich, Jun 27 2019

Formula

A(k) = exp(B(k+1)/(k+1)*H(k)-zeta'(-k)), where B(k) is the k-th Bernoulli number and H(k) the k-th harmonic number.
A(0) = sqrt(2*Pi) (A019727),
A(1) = A = Glaisher-Kinkelin constant (A074962),
A(2) = exp(-zeta'(-2)) = exp(zeta(3)/(4*Pi^2)).
Equals exp(-A240966). - Vaclav Kotesovec, Feb 22 2015

A243264 Decimal expansion of the generalized Glaisher-Kinkelin constant A(4).

Original entry on oeis.org

9, 9, 2, 0, 4, 7, 9, 7, 4, 5, 2, 5, 0, 4, 0, 2, 6, 0, 0, 1, 3, 4, 3, 6, 9, 7, 7, 6, 2, 5, 4, 4, 3, 3, 5, 6, 7, 3, 6, 9, 0, 4, 8, 5, 1, 2, 7, 6, 1, 8, 8, 0, 8, 9, 3, 5, 2, 0, 9, 4, 6, 1, 4, 9, 1, 5, 5, 4, 1, 4, 5, 3, 8, 5, 3, 8, 9, 4, 5, 9, 7, 6, 1, 8, 0, 5, 7, 7, 3, 6, 1, 7, 2, 9, 5, 6, 4, 3
Offset: 0

Views

Author

Jean-François Alcover, Jun 02 2014

Keywords

Comments

Also known as the 4th Bendersky constant.

Examples

			0.9920479745250402600134369776254433567369...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.15 Glaisher-Kinkelin constant, p. 137.

Crossrefs

Programs

  • Mathematica
    RealDigits[Exp[-3*Zeta[5]/(4*Pi^4)], 10, 98] // First
    RealDigits[Exp[N[(BernoulliB[4]/4)*(Zeta[5]/Zeta[4]), 100]]] // First (* G. C. Greubel, Dec 31 2015 *)
  • PARI
    exp(-3*zeta(5)/(4*Pi^4)) \\ Stefano Spezia, Dec 01 2024

Formula

A(k) = exp(B(k+1)/(k+1)*H(k)-zeta'(-k)), where B(k) is the k-th Bernoulli number and H(k) the k-th harmonic number.
A(4) = exp(-zeta'(-4)) = exp(-3*zeta(5)/(4*Pi^4)).
A(4) = exp((B(4)/4)*(zeta(5)/zeta(4))). - G. C. Greubel, Dec 31 2015

A243265 Decimal expansion of the generalized Glaisher-Kinkelin constant A(5).

Original entry on oeis.org

1, 0, 0, 9, 6, 8, 0, 3, 8, 7, 2, 8, 5, 8, 6, 6, 1, 6, 1, 1, 2, 0, 0, 8, 9, 1, 9, 0, 4, 6, 2, 6, 3, 0, 6, 9, 2, 6, 0, 3, 2, 7, 6, 3, 4, 7, 2, 1, 1, 5, 2, 4, 9, 1, 8, 4, 6, 0, 9, 2, 4, 7, 2, 1, 5, 6, 2, 3, 0, 1, 4, 2, 5, 0, 0, 3, 4, 1, 0, 0, 3, 2, 7, 7, 0, 1, 5, 0, 5, 6, 5, 9, 6, 5, 2, 7, 6, 4, 5, 5, 5, 9, 4
Offset: 1

Views

Author

Jean-François Alcover, Jun 02 2014

Keywords

Comments

Also known as the 5th Bendersky constant.

Examples

			1.00968038728586616112008919046263...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.15 Glaisher-Kinkelin constant, p. 137.

Crossrefs

Programs

  • Mathematica
    RealDigits[Exp[137/15120-Zeta'[-5]], 10, 103] // First
    RealDigits[Exp[N[(BernoulliB[6]/6)*(EulerGamma + Log[2*Pi] - Zeta'[6]/Zeta[6]), 200]]]//First (* G. C. Greubel, Dec 31 2015 *)
  • PARI
    exp(137/15120-zeta'(-5)) \\ Stefano Spezia, Dec 01 2024

Formula

A(k) = exp(B(k+1)/(k+1)*H(k)-zeta'(-k)), where B(k) is the k-th Bernoulli number and H(k) the k-th harmonic number.
A(5) = exp(137/15120-zeta'(-5)).
Equals exp(gamma/252 - 15*Zeta'(6)/(4*Pi^6)) * (2*Pi)^(1/252), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Jul 25 2015
Equals (2*Pi*exp(gamma) * Product_{p prime} p^(1/(p^6-1)))^c, where gamma is Euler's constant (A001620), and c = Bernoulli(6)/6 = 1/252 (Van Gorder, 2012). - Amiram Eldar, Feb 08 2024

A259068 Decimal expansion of zeta'(-3) (the derivative of Riemann's zeta function at -3).

Original entry on oeis.org

0, 0, 5, 3, 7, 8, 5, 7, 6, 3, 5, 7, 7, 7, 4, 3, 0, 1, 1, 4, 4, 4, 1, 6, 9, 7, 4, 2, 1, 0, 4, 1, 3, 8, 4, 2, 8, 9, 5, 6, 6, 4, 4, 3, 9, 7, 4, 2, 2, 9, 5, 5, 0, 7, 0, 5, 9, 4, 4, 7, 0, 2, 3, 2, 2, 3, 3, 2, 4, 5, 0, 1, 9, 9, 7, 9, 2, 4, 0, 6, 9, 5, 8, 6, 0, 9, 5, 1, 0, 3, 8, 7, 0, 8, 2, 5, 6, 8, 3, 2, 6, 7, 1, 2, 2, 4, 3
Offset: 0

Views

Author

Jean-François Alcover, Jun 18 2015

Keywords

Examples

			0.0053785763577743011444169742104138428956644397422955070594470232233245...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 2.15.1 Generalized Glaisher constants, p. 136-137.

Crossrefs

Programs

  • Mathematica
    Join[{0, 0}, RealDigits[Zeta'[-3], 10, 105] // First]

Formula

zeta'(-n) = (BernoulliB(n+1)*HarmonicNumber(n))/(n+1) - log(A(n)), where A(n) is the n-th Bendersky constant, that is the n-th generalized Glaisher constant.
zeta'(-3) = -11/720 - log(A(3)), where A(3) is A243263.
Equals -11/720 + (gamma + log(2*Pi))/120 - 3*Zeta'(4)/(4*Pi^4), where gamma is the Euler-Mascheroni constant A001620. - Vaclav Kotesovec, Jul 24 2015

A260662 Decimal expansion of the generalized Glaisher-Kinkelin constant A(13).

Original entry on oeis.org

1, 2, 2, 2, 9, 4, 4, 2, 5, 1, 8, 0, 8, 1, 3, 3, 8, 7, 2, 6, 4, 7, 8, 9, 9, 9, 6, 0, 7, 2, 7, 7, 1, 7, 9, 8, 8, 5, 6, 1, 2, 6, 5, 8, 0, 3, 1, 2, 9, 5, 3, 2, 9, 5, 0, 1, 0, 8, 3, 7, 2, 8, 1, 0, 3, 4, 4, 6, 0, 6, 4, 2, 2, 7, 6, 8, 6, 6, 2, 0, 3, 0, 3, 0, 0, 1, 2, 6, 4, 2, 6, 9, 2, 1, 7, 5, 1, 1, 4, 2, 6, 1, 2, 4, 4, 9, 1, 8, 3, 6, 0, 0, 2, 0, 9
Offset: 1

Views

Author

G. C. Greubel, Nov 13 2015

Keywords

Comments

Also known as the thirteenth Bendersky constant.

Examples

			1.2229442518081338726478999607277179885...
		

Crossrefs

Cf. A019727 (A(0)), A074962 (A(1)), A243262 (A(2)), A243263 (A(3)), A243264 (A(4)), A243265 (A(5)), A266553 (A(6)), A266554 (A(7)), A266555 (A(8)), A266556 (A(9)), A266557 (A(10)), A266558 (A(11)), A266559 (A(12)), A260662 (A(13)), A266560 (A(14)), A266562 (A(15)), A266563 (A(16)), A266564 (A(17)), A266565 (A(18)), A266566 (A(19)), A266567 (A(20)).

Programs

  • Mathematica
    N[Exp[(1/14)*HarmonicNumber[13]*BernoulliB[14] - Zeta'[-13]], 100]
    Exp[N[(BernoulliB[14]/14)*(EulerGamma + Log[2*Pi] - Zeta'[14]/Zeta[14]), 200]]

Formula

A(k) = exp(H(k)*B(k+1)/(k+1) - zeta'(-k)), where B(k) is the k-th Bernoulli number, H(k) the k-th Harmonic number, and zeta'(x) is the derivative of the Riemann zeta function.
A(13) = exp((1/14)*HarmonicNumber(13)*Bernoulli(14) - RiemannZeta'(-13)).
A(13) = exp((B(14)/14)*(EulerGamma + Log(2*Pi) - (zeta'(14)/zeta(14)))).
Equals (2*Pi*exp(gamma) * Product_{p prime} p^(1/(p^14-1)))^c, where gamma is Euler's constant (A001620), and c = Bernoulli(14)/14 = 1/12 (Van Gorder, 2012). - Amiram Eldar, Feb 08 2024

A266554 Decimal expansion of the generalized Glaisher-Kinkelin constant A(7).

Original entry on oeis.org

9, 8, 9, 9, 7, 5, 6, 5, 3, 3, 3, 3, 4, 1, 7, 0, 9, 4, 1, 7, 5, 3, 9, 6, 4, 8, 3, 0, 5, 8, 8, 6, 9, 2, 0, 0, 2, 0, 8, 2, 4, 7, 1, 5, 1, 4, 3, 0, 7, 4, 5, 3, 0, 5, 1, 2, 8, 5, 5, 3, 8, 6, 2, 4, 2, 3, 7, 7, 4, 6, 4, 2, 9, 5, 9, 6, 1, 6, 7, 5, 7, 4, 2, 7, 5, 6, 6, 8, 7, 7, 6, 3, 6
Offset: 0

Views

Author

G. C. Greubel, Dec 31 2015

Keywords

Comments

Also known as the 7th Bendersky constant.

Examples

			0.9899756533334170941753964830588692002082471514307453051285538624....
		

Crossrefs

Cf. A019727 (A(0)), A074962 (A(1)), A243262 (A(2)), A243263 (A(3)), A243264 (A(4)), A243265 (A(5)), A266553 (A(6)), A266555 (A(8)), A266556 (A(9)), A266557 (A(10)), A266558 (A(11)), A266559 (A(12)), A260662 (A(13)), A266560 (A(14)), A266562 (A(15)), A266563 (A(16)), A266564 (A(17)), A266565 (A(18)), A266566 (A(19)), A266567 (A(20)).

Programs

  • Mathematica
    Exp[N[(BernoulliB[8]/8)*(EulerGamma + Log[2*Pi] - Zeta'[8]/Zeta[8]), 200]]

Formula

A(k) = exp(H(k)*B(k+1)/(k+1) - zeta'(-k)), where B(k) is the k-th Bernoulli number, H(k) the k-th harmonic number, and zeta'(x) is the derivative of the Riemann zeta function.
A(7) = exp(H(7)*B(8)/8 - zeta'(-7)) = exp((B(8)/8)*(EulerGamma + log(2*Pi) - (zeta'(8)/zeta(8)))).
Equals (2*Pi*exp(gamma) * Product_{p prime} p^(1/(p^8-1)))^c, where gamma is Euler's constant (A001620), and c = Bernoulli(8)/8 = -1/240 (Van Gorder, 2012). - Amiram Eldar, Feb 08 2024

A266556 Decimal expansion of the generalized Glaisher-Kinkelin constant A(9).

Original entry on oeis.org

1, 0, 1, 8, 4, 6, 9, 9, 2, 9, 9, 2, 0, 9, 9, 2, 9, 1, 2, 1, 7, 0, 6, 5, 9, 0, 4, 9, 3, 7, 6, 6, 7, 2, 1, 7, 2, 3, 0, 8, 6, 1, 0, 1, 9, 0, 5, 6, 4, 0, 7, 4, 9, 2, 0, 3, 8, 0, 0, 7, 0, 5, 7, 3, 6, 7, 5, 4, 7, 6, 1, 9, 4, 9, 4
Offset: 1

Views

Author

G. C. Greubel, Dec 31 2015

Keywords

Comments

Also known as the 9th Bendersky constant.

Examples

			1.018469929920992912170659049376672172308610190564074920380...
		

Crossrefs

Cf. A019727 (A(0)), A074962 (A(1)), A243262 (A(2)), A243263 (A(3)), A243264 (A(4)), A243265 (A(5)), A266553 (A(6)), A266554 (A(7)), A266555 (A(8)), A266556 (A(9)), A266557 (A(10)), A266558 (A(11)), A266559 (A(12)), A260662 (A(13)), A266560 (A(14)), A266562 (A(15)), A266563 (A(16)), A266564 (A(17)), A266565 (A(18)), A266566 (A(19)), A266567 (A(20)).

Programs

  • Mathematica
    Exp[N[(BernoulliB[10]/10)*(EulerGamma + Log[2*Pi] - Zeta'[10]/Zeta[10]), 200]]

Formula

A(k) = exp(H(k)*B(k+1)/(k+1) - zeta'(-k)), where B(k) is the k-th Bernoulli number, H(k) the k-th harmonic number, and zeta'(x) is the derivative of the Riemann zeta function.
A(9) = exp(H(9)*B(10)/10 - zeta'(-9)) = exp((B(10)/10)*(EulerGamma + log(2*Pi) - (zeta'(10)/zeta(10)))).
Equals (2*Pi*exp(gamma) * Product_{p prime} p^(1/(p^10-1)))^c, where gamma is Euler's constant (A001620), and c = Bernoulli(10)/10 = 1/132 (Van Gorder, 2012). - Amiram Eldar, Feb 08 2024

A266558 Decimal expansion of the generalized Glaisher-Kinkelin constant A(11).

Original entry on oeis.org

9, 5, 0, 3, 3, 1, 2, 4, 8, 4, 5, 3, 2, 8, 8, 8, 6, 6, 5, 1, 4, 2, 3, 3, 8, 4, 1, 0, 1, 5, 3, 3, 1, 2, 7, 1, 5, 9, 7, 5, 6, 6, 4, 0, 3, 4, 5, 6, 1, 7, 3, 0, 4, 0, 8, 6, 1, 0, 8, 8, 8, 8, 1, 1, 6, 2, 2, 9, 7, 8, 4, 9, 1, 7, 7, 3, 4, 4, 4, 5, 1
Offset: 0

Views

Author

G. C. Greubel, Dec 31 2015

Keywords

Comments

Also known as the 11th Bendersky constant.

Examples

			0.950331248453288866514233841015331271597566403456173040861088881...
		

Crossrefs

Cf. A019727 (A(0)), A074962 (A(1)), A243262 (A(2)), A243263 (A(3)), A243264 (A(4)), A243265 (A(5)), A266553 (A(6)), A266554 (A(7)), A266555 (A(8)), A266556 (A(9)), A266557 (A(10)), A266559 (A(12)), A260662 (A(13)), A266560 (A(14)), A266562 (A(15)), A266563 (A(16)), A266564 (A(17)), A266565 (A(18)), A266566 (A(19)), A266567 (A(20)).

Programs

  • Mathematica
    Exp[N[(BernoulliB[12]/12)*(EulerGamma + Log[2*Pi] - Zeta'[12]/Zeta[12]), 200]]

Formula

A(k) = exp(H(k)*B(k+1)/(k+1) - zeta'(-k)), where B(k) is the k-th Bernoulli number, H(k) the k-th harmonic number, and zeta'(x) is the derivative of the Riemann zeta function.
A(11) = exp(H(11)*B(12)/12 - zeta'(-11)) = exp((B(12)/12)*(EulerGamma + log(2*Pi) - (zeta'(12)/zeta(12)))).
Equals (2*Pi*exp(gamma) * Product_{p prime} p^(1/(p^12-1)))^c, where gamma is Euler's constant (A001620), and c = Bernoulli(12)/12 = -691/32760 (Van Gorder, 2012). - Amiram Eldar, Feb 08 2024

A266562 Decimal expansion of the generalized Glaisher-Kinkelin constant A(15).

Original entry on oeis.org

3, 4, 2, 8, 3, 0, 8, 0, 6, 1, 3, 2, 8, 1, 6, 7, 3, 6, 5, 7, 1, 7, 1, 1, 1, 4, 6, 3, 4, 0, 6, 7, 2, 3, 7, 8, 1, 4, 1, 7, 2, 6, 9, 4, 5, 4, 8, 3, 2, 3, 6, 8, 7, 7, 2, 5, 1, 0, 7, 6, 1, 6, 4, 2, 4, 1, 9, 2, 6, 5, 5, 3, 5, 8, 7, 9, 7, 1, 1, 2, 8, 5, 2, 1, 3, 8, 4, 9, 6, 0, 2, 5, 9, 3
Offset: 0

Views

Author

G. C. Greubel, Dec 31 2015

Keywords

Comments

Also known as the 15th Bendersky constant.

Examples

			0.342830806132816736571711146340672378141726945483236877251076164....
		

Crossrefs

Cf. A019727 (A(0)), A074962 (A(1)), A243262 (A(2)), A243263 (A(3)), A243264 (A(4)), A243265 (A(5)), A266553 (A(6)), A266554 (A(7)), A266555 (A(8)), A266556 (A(9)), A266557 (A(10)), A266558 (A(11)), A266559 (A(12)), A260662 (A(13)), A266560 (A(14)), A266563 (A(16)), A266564 (A(17)), A266565 (A(18)), A266566 (A(19)), A266567 (A(20)).

Programs

  • Mathematica
    Exp[N[(BernoulliB[16]/16)*(EulerGamma + Log[2*Pi] - Zeta'[16]/Zeta[16]), 200]]

Formula

A(k) = exp(H(k)*B(k+1)/(k+1) - zeta'(-k)), where B(k) is the k-th Bernoulli number, H(k) the k-th harmonic number, and zeta'(x) is the derivative of the Riemann zeta function.
A(15) = exp(H(15)*B(16)/16 - zeta'(-15)) = exp((B(16)/16)*(EulerGamma + log(2*Pi) - zeta'(16)/zeta(16))).
Equals (2*Pi*exp(gamma) * Product_{p prime} p^(1/(p^16-1)))^c, where gamma is Euler's constant (A001620), and c = Bernoulli(16)/16 = -3617/8160 (Van Gorder, 2012). - Amiram Eldar, Feb 08 2024
Showing 1-10 of 30 results. Next