cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A099907 a(n) = C(2n-1,n-1) mod n^3.

Original entry on oeis.org

0, 3, 10, 35, 1, 30, 1, 291, 253, 378, 1, 782, 1, 2404, 1260, 291, 1, 3378, 1, 410, 7899, 3996, 1, 6030, 126, 10988, 11188, 5180, 1, 19712, 1, 8483, 5334, 34394, 1841, 21410, 1, 20580, 39556, 38810, 1, 64260, 1, 35972, 66060, 36504, 1, 61326, 1716, 123628
Offset: 1

Views

Author

Henry Bottomley, Oct 29 2004

Keywords

Comments

For p prime > 3, Joseph Wolstenholme showed in 1862 that a(p)=1. - corrected by Jonathan Sondow, Jan 24 2016

Examples

			a(11) = 352716 mod 1331 = 1.
		

Crossrefs

Programs

  • Magma
    [Binomial(2*n-1, n-1) mod n^3: n in [1..50]]; // Vincenzo Librandi, Jan 24 2016
  • Maple
    seq(binomial(2*n-1,n-1) mod n^3, n=1..100); # Robert Israel, Jan 24 2016
  • Mathematica
    Table[Mod[Binomial[2 n - 1, n - 1], n^3], {n, 1, 50}] (* Vincenzo Librandi, Jan 24 2016 *)
  • PARI
    a(n) = binomial(2*n-1, n-1) % n^3; \\ Michel Marcus, Jan 24 2016
    

A267824 Composite numbers n such that binomial(2n-1, n-1) == 1 (mod n^2).

Original entry on oeis.org

283686649, 4514260853041
Offset: 1

Views

Author

Jonathan Sondow, Jan 25 2016

Keywords

Comments

Babbage proved the congruence holds if n > 2 is prime.
See A088164 and A263882 for references, links, and additional comments.
Conjecture: n is a term if and only if n = A088164(i)^2 for some i >= 1 (cf. McIntosh, 1995, p. 385). - Felix Fröhlich, Jan 27 2016
The "if" part of the conjecture is true: see the McIntosh reference. - Jonathan Sondow, Jan 28 2016
The above conjecture implies that this sequence and A228562 are disjoint. - Felix Fröhlich, Jan 27 2016
Composites c such that A281302(c) > 1. - Felix Fröhlich, Feb 21 2018

Examples

			a(1) = 16843^2 and a(2) = 2124679^2 are squares of Wolstenholme primes A088164.
		

Crossrefs

A298946 a(n) = binomial(2*c-1, c-1) (mod c^4), where c is the n-th composite number.

Original entry on oeis.org

35, 462, 2339, 4627, 2378, 4238, 5148, 1260, 57635, 85026, 64410, 100509, 163716, 171918, 93876, 309780, 148969, 444220, 370712, 532771, 652200, 938386, 816466, 907874, 569300, 1107298, 2470810, 2953692, 887812, 1341810, 2956584, 1941390, 589961, 6248628
Offset: 1

Views

Author

Felix Fröhlich, Jan 30 2018

Keywords

Comments

Composites c where a(n) = 1 could be called "Wolstenholme pseudoprimes". Do any such composites exist?
A necessary condition for c to be a "Wolstenholme pseudoprime" would be that it is a term of A228562 or A267824.

Crossrefs

Programs

  • Maple
    R:= NULL:
    count:= 0: F:= 10;
    for n from 4 while count < 100 do
      F:= F * (4*n-2)/n;
      if not isprime(n) then
         count:= count+1;
         R:= R, F mod (n^4);
      fi
    od:
    R; # Robert Israel, Feb 02 2018
  • Mathematica
    Table[Mod[Binomial[2 c - 1, c - 1], c^4], {c, Select[Range@ 50, CompositeQ]}] (* Michael De Vlieger, Feb 01 2018 *)
  • PARI
    forcomposite(c=1, 200, print1(lift(Mod(binomial(2*c-1, c-1), c^4)), ", "))
    
  • Python
    from sympy import binomial, composite
    def A298946(n):
        c = composite(n)
        return binomial(2*c-1,c-1) % c**4 # Chai Wah Wu, Feb 02 2018
Showing 1-3 of 3 results.