cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A245306 a(n) = Fibonacci(n)^2+1.

Original entry on oeis.org

1, 2, 2, 5, 10, 26, 65, 170, 442, 1157, 3026, 7922, 20737, 54290, 142130, 372101, 974170, 2550410, 6677057, 17480762, 45765226, 119814917, 313679522, 821223650, 2149991425, 5628750626, 14736260450, 38580030725, 101003831722, 264431464442, 692290561601
Offset: 0

Views

Author

Michel Lagneau, Jul 17 2014

Keywords

Comments

a(n) is the product of two Fibonacci numbers.

Examples

			a(9) = Fibonacci(9)^2+1 = 34^2+1 = 1157 = A001519(4)* A001519(6)= 13*89.
		

Crossrefs

Programs

  • Maple
    with(numtheory):with(combinat,fibonacci):nn:=100:for i from 0 to nn do:x:=fibonacci(i)^2+1: printf(`%d, `,x):od:
  • Mathematica
    Fibonacci[Range[0,30]]^2+1 (* Harvey P. Dale, Aug 05 2018 *)
  • PARI
    a(n) = fibonacci(n)^2+1; \\ Michel Marcus, Oct 20 2020

Formula

a(2n) = A001519(n)* A001519(n+1) and a(2n+1) = A001519(n)* A001519(n+2).
a(n) = A007598(n)+1.
G.f.: -(2*x^3-4*x^2-x+1)/(x^4-3*x^3+3*x-1). - Alois P. Heinz, Jul 17 2014
Sum_{n>=0} 1/a(n) = (3 + 5*sqrt(5))/6 = (5*phi - 1)/3, where phi is the golden ratio (A001622). - Amiram Eldar, Oct 20 2020
a(2n) = A000045(2n-1)*A000045(2n+1). a(2n+1) = A000045(2n-1)*A000045(2n+3). - Chai Wah Wu, Nov 26 2020
a(n) = a(-n) = |F(n) + i|^2 for all n in Z. - Michael Somos, Sep 16 2023