A301906 T(n,k)=Number of nXk 0..1 arrays with every element equal to 0, 2 or 3 horizontally or antidiagonally adjacent elements, with upper left element zero.
1, 1, 2, 1, 1, 4, 1, 2, 1, 8, 1, 2, 3, 1, 16, 1, 3, 2, 7, 1, 32, 1, 6, 2, 5, 16, 1, 64, 1, 10, 7, 8, 10, 43, 1, 128, 1, 21, 12, 40, 12, 26, 117, 1, 256, 1, 42, 27, 96, 92, 64, 65, 330, 1, 512, 1, 86, 62, 316, 320, 532, 196, 170, 935, 1, 1024, 1, 179, 160, 1078, 1588, 1934, 1999, 864, 442
Offset: 1
Examples
Some solutions for n=5 k=4 ..0..1..1..0. .0..1..1..0. .0..1..1..1. .0..1..1..0. .0..1..0..1 ..1..1..1..1. .1..1..1..0. .1..1..1..0. .1..1..1..0. .0..1..0..1 ..0..1..1..0. .0..1..1..0. .0..1..1..0. .0..1..1..0. .0..1..0..1 ..1..1..1..1. .0..1..1..1. .0..1..1..1. .0..1..1..1. .0..1..0..1 ..0..1..1..0. .0..1..1..0. .0..1..1..0. .1..1..1..0. .0..1..0..1
Links
- R. H. Hardin, Table of n, a(n) for n = 1..287
Formula
Empirical for column k:
k=1: a(n) = 2*a(n-1)
k=2: a(n) = a(n-1)
k=3: a(n) = 3*a(n-1) +a(n-2) -4*a(n-3)
k=4: a(n) = 3*a(n-1) -3*a(n-3) +a(n-4)
k=5: a(n) = 4*a(n-1) +5*a(n-2) -20*a(n-3) -4*a(n-4) +16*a(n-5) for n>6
k=6: [order 20] for n>21
k=7: [order 30] for n>33
Empirical for row n:
n=1: a(n) = a(n-1)
n=2: a(n) = 2*a(n-1) +a(n-2) -a(n-3) -2*a(n-4) +a(n-5)
n=3: [order 30] for n>31
Comments