cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A004111 Number of rooted identity trees with n nodes (rooted trees whose automorphism group is the identity group).

Original entry on oeis.org

0, 1, 1, 1, 2, 3, 6, 12, 25, 52, 113, 247, 548, 1226, 2770, 6299, 14426, 33209, 76851, 178618, 416848, 976296, 2294224, 5407384, 12780394, 30283120, 71924647, 171196956, 408310668, 975662480, 2335443077, 5599508648, 13446130438, 32334837886, 77863375126, 187737500013, 453203435319, 1095295264857, 2649957419351
Offset: 0

Views

Author

Keywords

Comments

The nodes are unlabeled.
There is a natural correspondence between rooted identity trees and finitary sets (sets whose transitive closure is finite); each node represents a set, with the children of that node representing the members of that set. When the set corresponding to an identity tree is written out using braces, there is one set of braces for each node of the tree; thus a(n) is also the number of sets that can be made using n pairs of braces. - Franklin T. Adams-Watters, Oct 25 2011
Shifts left under WEIGH transform. - Franklin T. Adams-Watters, Jan 17 2007
Is this the sequence mentioned in the middle of page 355 of Motzkin (1948)? - N. J. A. Sloane, Jul 04 2015. Answer from David Broadhurst, Apr 06 2022: The answer is No. Motzkin was considering a sequence asymptotic to Catalan(n)/(4*n), namely A006082, which begins 1, 1, 1, 2, 3, 6, 12, 27, ... but he miscalculated and got 1, 1, 1, 2, 3, 6, 12, 25, ... instead! - N. J. A. Sloane, Apr 06 2022

Examples

			The 2 identity trees with 4 nodes are:
     O    O
    / \   |
   O   O  O
       |  |
       O  O
          |
          O
These correspond to the sets {{},{{}}} and {{{{}}}}.
G.f.: x + x^2 + x^3 + 2*x^4 + 3*x^5 + 6*x^6 + 12*x^7 + 25*x^8 + 52*x^9 + ...
		

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 330.
  • S. R. Finch, Mathematical Constants, Cambridge, 2003, p. 301 and 562.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 64, Eq. (3.3.15); p. 80, Problem 3.10.
  • D. E. Knuth, Fundamental Algorithms, 3rd Ed., 1997, pp. 386-388.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Haskell
    import Data.List (genericIndex)
    a004111 = genericIndex a004111_list
    a004111_list = 0 : 1 : f 1 [1] where
       f x zs = y : f (x + 1) (y : zs) where
                y = (sum $ zipWith (*) zs $ map g [1..]) `div` x
       g k = sum $ zipWith (*) (map (((-1) ^) . (+ 1)) $ reverse divs)
                               (zipWith (*) divs $ map a004111 divs)
                               where divs = a027750_row k
    -- Reinhard Zumkeller, Apr 29 2014
    
  • Maple
    A004111 := proc(n)
            spec := [ A, {A=Prod(Z,PowerSet(A))} ]:
            combstruct[count](spec, size=n) ;
    end proc:
    # second Maple program:
    with(numtheory):
    a:= proc(n) a(n):= `if`(n<2, n, add(a(n-k)*add(a(d)*d*
           (-1)^(k/d+1), d=divisors(k)), k=1..n-1)/(n-1))
        end:
    seq(a(n), n=0..50);  # Alois P. Heinz, Jul 15 2014
  • Mathematica
    s[ n_, k_ ] := s[ n, k ]=a[ n+1-k ]+If[ n<2k, 0, -s[ n-k, k ] ]; a[ 1 ]=1; a[ n_ ] := a[ n ]=Sum[ a[ i ]s[ n-1, i ]i, {i, 1, n-1} ]/(n-1); Table[ a[ i ], {i, 1, 30} ] (* Robert A. Russell *)
    a[ n_] := If[ n < 2, Boole[n == 1], Nest[ CoefficientList[ Normal[ Times @@ (Table[1 + x^k, {k, Length@#}]^#) + x O[x]^Length@#], x] &, {}, n - 1][[n]]]; (* Michael Somos, Jul 10 2014 *)
    a[n_] := a[n] = Sum[a[n-k]*Sum[a[d]*d*(-1)^(k/d+1),{d, Divisors[k]}], {k, 1, n-1}]/(n-1); a[0]=0; a[1]=1; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 02 2015 *)
  • PARI
    N=66;  A=vector(N+1, j, 1);
    for (n=1, N, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, (-1)^(k/d+1) * d * A[d]) * A[n-k+1] ) );
    concat([0], A)
    \\ Joerg Arndt, Jul 10 2014

Formula

Recurrence: a(n+1) = (1/n) * Sum_{k=1..n} ( Sum_{d|k} (-1)^(k/d+1) d*a(d) ) * a(n-k+1). - Mitchell Harris, Dec 02 2004
G.f. satisfies A(x) = x*exp(A(x) - A(x^2)/2 + A(x^3)/3 - A(x^4)/4 + ...). [Harary and Prins]
Also A(x) = Sum_{n >= 1} a(n)*x^n = x * Product_{n >= 1} (1+x^n)^a(n).
a(n) ~ c * d^n / n^(3/2), where d = A246169 = 2.51754035263200389079535..., c = 0.3625364233974198712298411097408713812865256408189512533230825639621448038... . - Vaclav Kotesovec, Aug 22 2014, updated Dec 26 2020

A255517 Number A(n,k) of rooted identity trees with n nodes and k-colored non-root nodes; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 1, 2, 1, 0, 0, 1, 3, 5, 2, 0, 0, 1, 4, 12, 18, 3, 0, 0, 1, 5, 22, 64, 66, 6, 0, 0, 1, 6, 35, 156, 363, 266, 12, 0, 0, 1, 7, 51, 310, 1193, 2214, 1111, 25, 0, 0, 1, 8, 70, 542, 2980, 9748, 14043, 4792, 52, 0, 0, 1, 9, 92, 868, 6273, 30526, 82916, 91857, 21124, 113, 0
Offset: 0

Views

Author

Alois P. Heinz, Feb 24 2015

Keywords

Comments

From Vaclav Kotesovec, Feb 24 2015: (Start)
k Limit n->infinity A(n,k)^(1/n)
1 2.517540352632003890795354598463447277335981266803... = A246169
2 5.249032491228170579164952216184309265343086337648... = A246312
3 7.969494030514425004826375511986491746399264355846...
4 10.688492754969652458452048798468242930479212456958...
5 13.407087472537747579787047072702638639945914705837...
6 16.125529360448558670505097146631763969697822205298...
7 18.843901825822305757579605844910623225182677164912...
8 21.562238702430237066018783115405680041128676137631...
9 24.280555694806692616578932533497629224907619468796...
10 26.998860838916733933849490675388336975888308433826...
100 271.64425688361559470587959030374804709717287744789...
Conjecture: For big k the limit asymptotically approaches k*exp(1).
(End)

Examples

			A(3,2) = 5:
  o    o    o    o      o
  |    |    |    |     / \
  1    1    2    2    1   2
  |    |    |    |
  1    2    1    2
Square array A(n,k) begins:
  0,  0,   0,    0,    0,     0,     0, ...
  1,  1,   1,    1,    1,     1,     1, ...
  0,  1,   2,    3,    4,     5,     6, ...
  0,  1,   5,   12,   22,    35,    51, ...
  0,  2,  18,   64,  156,   310,   542, ...
  0,  3,  66,  363, 1193,  2980,  6273, ...
  0,  6, 266, 2214, 9748, 30526, 77262, ...
		

Crossrefs

Rows n=0-4 give: A000004, A000012, A001477, A000326, 2*A051662(k-1) for k>0.
Lower diagonal gives A255523.

Programs

  • Maple
    with(numtheory):
    A:= proc(n, k) option remember; `if`(n<2, n, add(A(n-j, k)*add(
          k*A(d, k)*d*(-1)^(j/d+1), d=divisors(j)), j=1..n-1)/(n-1))
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    A[n_, k_] := A[n, k] = If[n<2, n, Sum[A[n-j, k]*Sum[k*A[d, k]*d*(-1)^(j/d + 1), {d, Divisors[j]}], {j, 1, n-1}]/(n-1)]; Table[Table[A[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Feb 22 2016, after Alois P. Heinz *)

A000220 Number of asymmetric trees with n nodes (also called identity trees).

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 1, 1, 3, 6, 15, 29, 67, 139, 310, 667, 1480, 3244, 7241, 16104, 36192, 81435, 184452, 418870, 955860, 2187664, 5025990, 11580130, 26765230, 62027433, 144133676, 335731381, 783859852, 1834104934, 4300433063, 10102854473, 23778351222
Offset: 1

Views

Author

Keywords

References

  • F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 330.
  • S. R. Finch, Mathematical Constants, Cambridge, 2003, p. 301 and 562.
  • F. Harary, Graph Theory. Addison-Wesley, Reading, MA, 1969, p. 232.
  • F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 66, Eq. (3.3.22).
  • D. E. Knuth, Fundamental Algorithms, 3d Ed. 1997, pp. 386-88 describes methodology for generating similar sequence rapidly.
  • R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
  • A. J. Schwenk, personal communication.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; `if`(n<2, n, add(b(n-k)*add(
          b(d)*d*(-1)^(k/d+1), d=divisors(k)), k=1..n-1)/(n-1))
        end:
    a:= n-> b(n)-(add(b(j)*b(n-j), j=0..n)+
           `if`(irem(n, 2)=0, b(n/2), 0))/2:
    seq(a(n), n=1..50);  # Alois P. Heinz, Feb 24 2015
  • Mathematica
    s[ n_, k_ ] := s[ n, k ]=a[ n+1-k ]+If[ n<2k, 0, -s[ n-k, k ] ]; a[ 1 ]=1; a[ n_ ] := a[ n ]=Sum[ a[ i ]s[ n-1, i ]i, {i, 1, n-1} ]/(n-1); Table[ a[ i ]-Sum[ a[ j ]a[ i-j ], {j, 1, i/2} ]+If[ OddQ[ i ], 0, a[ i/2 ](a[ i/2 ]-1)/2 ], {i, 1, 50} ] (* Robert A. Russell *)

Formula

G.f.: A(x)-A^2(x)/2-A(x^2)/2, where A(x) is g.f. for A004111.
a(n) ~ c * d^n / n^(5/2), where d = A246169 = 2.51754035263200389079535..., c = 0.29938828746578432274375484519722721162... . - Vaclav Kotesovec, Aug 25 2014

A196161 Binomial transform of {A004111(n), n >= 1}.

Original entry on oeis.org

1, 2, 4, 9, 22, 57, 155, 439, 1283, 3837, 11675, 36013, 112348, 353836, 1123431, 3591616, 11551046, 37343096, 121280307, 395496997, 1294457887, 4250811199, 14001176036, 46243806379, 153123238870, 508207709138, 1690355937970, 5633580018286, 18810483711103, 62917378114528, 210788885780702, 707273100413094
Offset: 1

Views

Author

N. J. A. Sloane, Oct 27 2011

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; `if`(n<2, n, add(b(n-k)*add(
          b(d)*d*(-1)^(k/d+1), d=divisors(k)), k=1..n-1)/(n-1))
        end:
    a:= n-> add(b(k+1)*binomial(n-1, k), k=0..n-1):
    seq(a(n), n=1..50);  # Alois P. Heinz, Feb 24 2015
  • Mathematica
    b[n_] := b[n] = If[n < 2, n, Sum[b[n - k]*Sum[ b[d]*d*(-1)^(k/d + 1), {d, Divisors[k]}], {k, 1, n-1}]/(n-1)]; a[n_] := Sum[b[k+1]*Binomial[n-1, k], {k, 0, n-1}]; Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Feb 12 2016, after Alois P. Heinz *)

Formula

a(n) ~ c * d^n / n^(3/2), where d = 1 + A246169 = 3.51754035263200389079535459..., c = 0.428531715886712592684516703... - Vaclav Kotesovec, Oct 30 2017

A035056 Number of asymmetric forests with n nodes.

Original entry on oeis.org

1, 1, 0, 0, 0, 0, 0, 1, 2, 4, 9, 21, 44, 96, 206, 450, 981, 2159, 4757, 10571, 23563, 52835, 118939, 269047, 610878, 1392677, 3186001, 7313882, 16842202, 38900699, 90098260, 209229601, 487077685, 1136549747, 2657859059, 6228447488, 14624515804, 34402798404
Offset: 0

Views

Author

Christian G. Bower, Oct 15 1998

Keywords

References

  • Steven R. Finch, Mathematical Constants, Cambridge, 2003, p. 301 and 562.

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(b((i-1)$2), j)*b(n-i*j, i-1), j=0..n/i)))
        end:
    g:= n-> b((n-1)$2):
    h:= proc(n) option remember; g(n)-add(g(i)*g(n-i), i=0..n)/2
           -`if`(irem(n, 2)=1, 0, g(n/2))/2
        end:
    f:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
          add(binomial(h(i), j)*f(n-i*j, i-1), j=0..n/i)))
        end:
    a:= n-> f(n, n):
    seq(a(n), n=0..40);  # Alois P. Heinz, May 20 2013
  • Mathematica
    b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, Sum[Binomial[b[i-1, i-1], j]*b[n-i*j, i-1], {j, 0, n/i}]]]; g[n_] := b[n-1, n-1]; h[n_] := h[n] = g[n] - Sum[g[i]*g[n-i], {i, 0, n}]/2 - If[Mod[n, 2]==1, 0, g[n/2]]/2; f[n_, i_] := f[n, i] = If[n==0, 1, If[i<1, 0, Sum[Binomial[h[i], j]*f[n - i*j, i-1], {j, 0, n/i}]]]; a[n_] := f[n, n]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 21 2016, after Alois P. Heinz *)

Formula

Weigh transform of A000220.
a(n) ~ c * d^n / n^(5/2), where d = A246169 = 2.51754035263200389079535..., c = 0.421943694962576031011358... . - Vaclav Kotesovec, Aug 25 2014

A196154 Binomial transform of A004111.

Original entry on oeis.org

0, 1, 3, 7, 16, 38, 95, 250, 689, 1972, 5809, 17484, 53497, 165845, 519681, 1643112, 5234728, 16785774, 54128870, 175409177, 570906174, 1865364061, 6116175260, 20117351296, 66361157675, 219484396545, 727692105683, 2418048043653, 8051628061939, 26862111773042, 89779489887570, 300568375668272, 1007841476081366
Offset: 0

Views

Author

N. J. A. Sloane, Oct 27 2011

Keywords

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; `if`(n<2, n, add(b(n-k)*add(
          b(d)*d*(-1)^(k/d+1), d=divisors(k)), k=1..n-1)/(n-1))
        end:
    a:= n-> add(b(k)*binomial(n, k), k=0..n):
    seq(a(n), n=0..50);  # Alois P. Heinz, Feb 24 2015
  • Mathematica
    b[n_] := b[n] = If[n<2, n, Sum[b[n-k]*Sum[b[d]*d*(-1)^(k/d+1), {d, Divisors[k]}], {k, 1, n-1}]/(n-1)]; a[n_] := Sum[b[k]*Binomial[n, k], {k, 0, n}]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Feb 12 2016, after Alois P. Heinz *)

Formula

a(n) ~ c * d^n / n^(3/2), where d = 1 + A246169 = 3.51754035263200389079535459..., c = 0.59875012586719098912050580024... - Vaclav Kotesovec, Oct 30 2017

A227806 Number of rooted identity trees with n nodes and exactly 2 subtrees from the root.

Original entry on oeis.org

1, 1, 3, 5, 11, 22, 49, 104, 232, 513, 1159, 2619, 5989, 13734, 31729, 73555, 171377, 400631, 940104, 2212542, 5222932, 12360976, 29327260, 69735757, 166170966, 396727768, 948897250, 2273409345, 5455374972, 13110384631, 31550978034, 76029236983, 183437066950
Offset: 4

Views

Author

Alois P. Heinz, Jul 31 2013

Keywords

Examples

			:    o    :    o    :    o         o       o    :
:   / \   :   / \   :   / \       / \     / \   :
:  o   o  :  o   o  :  o   o     o   o   o   o  :
:  |      :  |      :  |   |    / \      |      :
:  o      :  o      :  o   o   o   o     o      :
:         :  |      :  |       |         |      :
:         :  o      :  o       o         o      :
:         :         :                    |      :
:  n=4    :  n=5    :  n=6               o      :
		

Crossrefs

Column k=2 of A227774.

Formula

a(n) ~ c * d^n / n^(3/2), where d = A246169 = 2.51754035263200389079535459846344... and c = 0.14400421547102520752812171064737721... - Vaclav Kotesovec, Jun 07 2021

A196118 Partial sums of A004111.

Original entry on oeis.org

0, 1, 2, 3, 5, 8, 14, 26, 51, 103, 216, 463, 1011, 2237, 5007, 11306, 25732, 58941, 135792, 314410, 731258, 1707554, 4001778, 9409162, 22189556, 52472676, 124397323, 295594279, 703904947, 1679567427, 4015010504, 9614519152, 23060649590, 55395487476
Offset: 0

Views

Author

N. J. A. Sloane, Oct 27 2011

Keywords

Comments

A004111 is an important sequence and the OEIS should include various sequences derived from it.

Crossrefs

Programs

  • Maple
    with(numtheory):
    b:= proc(n) option remember; `if`(n<2, n, add(b(n-k)*add(
          b(d)*d*(-1)^(k/d+1), d=divisors(k)), k=1..n-1)/(n-1))
        end:
    a:= proc(n) option remember; b(n)+`if`(n>0, a(n-1), 0) end:
    seq(a(n), n=0..50);  # Alois P. Heinz, Feb 24 2015
  • Mathematica
    b[n_] := b[n] = If[n<2, n, Sum[b[n-k]*Sum[b[d]*d*(-1)^(k/d+1), {d, Divisors[k]}], {k, 1, n-1}]/(n-1)]; a[n_] := a[n] = b[n] + If[n>0, a[n-1], 0]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Feb 17 2016, after Alois P. Heinz *)

Formula

a(n) ~ c * A246169^n / n^(3/2), where c = 0.601433809400132103408618319570970615307211984303335915895942080355184647... - Vaclav Kotesovec, Dec 26 2020

A275149 Decimal expansion of the radius of convergence of the generating function for the enumeration of rooted identity trees (A004111).

Original entry on oeis.org

3, 9, 7, 2, 1, 3, 0, 9, 6, 8, 8, 4, 2, 4, 0, 0, 4, 1, 4, 8, 5, 6, 5, 4, 0, 7, 0, 2, 2, 7, 3, 9, 8, 7, 3, 4, 2, 2, 9, 8, 7, 3, 7, 0, 9, 9, 5, 2, 7, 6
Offset: 0

Views

Author

Jean-François Alcover, Aug 10 2016

Keywords

Examples

			0.39721309688424004148565407022739873422987370995276...
		

References

  • Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.6.2 More Tree Varieties, p. 301.

Crossrefs

Formula

Equals 1 / A246169 (see formulas there given by Vaclav Kotesovec).
Showing 1-9 of 9 results.