A247112 Floor of sums of the cubes of the non-integer square roots of n, as partitioned by the integer roots: floor(Sum_{j=n^2+1..(n+1)^2-1} j^(3/2)).
0, 8, 67, 267, 746, 1690, 3333, 5957, 9892, 15516, 23255, 33583, 47022, 64142, 85561, 111945, 144008, 182512, 228267, 282131, 345010, 417858, 501677, 597517, 706476, 829700, 968383, 1123767, 1297142, 1489846, 1703265, 1938833, 2198032, 2482392, 2793491
Offset: 0
Links
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
Programs
-
Magma
[n eq 0 select 0 else Floor(&+[j^(3/2): j in [n^2+1..(n+1)^2-1]]): n in [0..50]]; // Bruno Berselli, Dec 03 2014
-
Mathematica
Table[1/2 (n + 5 n^2 + 6 n^3 + 4 n^4), {n, 0, 50}]
Formula
a(n) = floor(Sum_{j=n^2+1..(n+1)^2-1} j^(3/2)).
a(n) = n *(4*n^3 + 6*n^2 + 5*n + 1)/2.
G.f.: x*(8 + 27*x + 12*x^2 + x^3)/(1 - x)^5. - Bruno Berselli, Dec 03 2014
E.g.f.: exp(x)*x*(16 + 51*x + 30*x^2 + 4*x^3)/2. - Stefano Spezia, Jul 13 2024
Comments