cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A064350 a(n) = (3*n)!/n!.

Original entry on oeis.org

1, 6, 360, 60480, 19958400, 10897286400, 8892185702400, 10137091700736000, 15388105201717248000, 30006805143348633600000, 73096577329197271449600000, 217535414131691079834009600000, 776601428450137155007414272000000, 3275704825202678519821273399296000000
Offset: 0

Views

Author

Karol A. Penson, Sep 18 2001

Keywords

Comments

Also a(n) = (((n)!)^2)*A006480(n). [corrected by Johannes W. Meijer, Mar 02 2009]
a(n) is the number of ways to partition the set {1,2,...,3n} into n blocks of size 3 and then linearly order the elements within each block. - Geoffrey Critzer, Dec 30 2012

Crossrefs

From Johannes W. Meijer, Mar 07 2009: (Start)
Equals A001525*3!
Equals row sums of A157704 and A157705. (End)

Programs

  • Mathematica
    Table[(3n)!/n!,{n,0,20}]  (* Geoffrey Critzer, Dec 30 2012 *)
  • PARI
    { t=f=1; for (n=0, 70, if (n, t*=3*n*(3*n - 1)*(3*n - 2); f*=n); write("b064350.txt", n, " ", t/f) ) } \\ Harry J. Smith, Sep 12 2009

Formula

Integral representation as n-th moment of a positive function on a positive half-axis: a(n) = Integral_{x=0..oo} x^n*BesselK(1/3, 2*sqrt(x/27))/(3*Pi*sqrt(x)) dx, n >= 0.
A recursive formula: a(n) = (27 * (n - 1)^2 + 27 * (n - 1) + 6) * a(n - 1) with a(0) = 1. An explicit formula following from the recursion equation: a(n) = (3/2)*27^n*GAMMA(n+2/3)*GAMMA(n+1/3)/(Pi*3^(1/2)). - Thomas Wieder, Nov 15 2004
E.g.f.: (of aerated sequence) 2*cos(arcsin((3*sqrt(3)*x/2)/3))/sqrt(4-27*x^2). - Paul Barry, Jul 27 2010
E.g.f.: (with interpolated zeros) exp(x^3). - Geoffrey Critzer, Dec 30 2012
Sum_{n>=1} 1/a(n) = A248759. - Amiram Eldar, Nov 15 2020

Extensions

a(11) from Harry J. Smith, Sep 12 2009

A248760 Decimal expansion of sum_{n >= 1} (2n)!/(3n)!.

Original entry on oeis.org

3, 6, 8, 7, 3, 7, 8, 2, 0, 2, 9, 4, 6, 4, 9, 9, 0, 4, 0, 8, 9, 7, 7, 7, 2, 9, 6, 1, 6, 5, 7, 4, 0, 3, 4, 2, 0, 9, 8, 3, 7, 1, 9, 7, 8, 8, 1, 4, 6, 9, 8, 4, 9, 1, 0, 6, 8, 7, 8, 2, 5, 7, 4, 5, 8, 9, 0, 5, 9, 0, 1, 7, 3, 5, 7, 9, 6, 1, 9, 0, 0, 6, 7, 1, 5, 4
Offset: 0

Views

Author

Clark Kimberling, Oct 13 2014

Keywords

Examples

			0.368737820294649904089777296165740342098371978814698491068782574589059...
		

Crossrefs

Programs

  • Maple
    evalf(sum((2n)!/(3n)!, n=1..infinity), 120); # Vaclav Kotesovec, Oct 19 2014
  • Mathematica
    u = N[Sum[(2 n)!/(3 n)!, {n, 1, 300}], 120]
    RealDigits[u]  (* A248760 *)
    N[HypergeometricPFQ[{1, 3/2}, {4/3, 5/3}, 4/27]/3, 120] (* Vaclav Kotesovec, Nov 15 2020 *)
  • PARI
    suminf(n=1, (2*n)!/(3*n)!) \\ Michel Marcus, Oct 19 2014

A248761 Decimal expansion of sum_{n >= 1} 1/sqrt(n!).

Original entry on oeis.org

2, 4, 6, 9, 5, 0, 6, 3, 1, 4, 5, 2, 1, 0, 4, 7, 5, 6, 2, 4, 7, 5, 6, 3, 6, 7, 4, 4, 6, 6, 0, 1, 5, 0, 2, 5, 7, 6, 8, 9, 7, 5, 6, 1, 8, 3, 9, 9, 4, 9, 6, 9, 1, 9, 9, 6, 7, 7, 9, 2, 5, 7, 0, 1, 9, 7, 1, 8, 3, 5, 4, 8, 8, 0, 0, 3, 4, 0, 8, 8, 3, 4, 0, 3, 8, 6, 6, 2, 5, 0, 8, 4, 1, 2, 0, 0, 7, 1, 3, 5, 1, 7, 2, 6, 1
Offset: 1

Views

Author

Clark Kimberling, Oct 13 2014

Keywords

Examples

			2.46950631452104756247563674466015025768975618399496919967792570...
		

Crossrefs

Programs

  • Maple
    evalf(sum(1/sqrt(n!), n=1..infinity), 120); # Vaclav Kotesovec, Oct 19 2014
  • Mathematica
    u = N[Sum[1/Sqrt[n!], {n, 1, 200}], 100]
    RealDigits[u]  (* A248761 *)
  • PARI
    suminf(n=1, (1/sqrt(n!))) \\ Michel Marcus, Oct 18 2014
Showing 1-3 of 3 results.