cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A064352 a(n) = (3*n)!/(2*n)!.

Original entry on oeis.org

1, 3, 30, 504, 11880, 360360, 13366080, 586051200, 29654190720, 1700755056000, 109027350432000, 7725366544896000, 599555620984320000, 50578512186237235200, 4608264443634948096000, 450974292794344230912000
Offset: 0

Views

Author

Karol A. Penson, Sep 19 2001

Keywords

Crossrefs

Programs

  • Mathematica
    Array[(3 #)!/(2 #)! &, 16, 0] (* Michael De Vlieger, Jan 13 2018 *)
  • PARI
    { f3=f2=1; for (n=0, 100, if (n, f3*=3*n*(3*n - 1)*(3*n - 2); f2*=2*n*(2*n - 1)); write("b064352.txt", n, " ", f3/f2) ) } \\ Harry J. Smith, Sep 12 2009
    
  • Sage
    [falling_factorial(3*n, n) for n in (0..15)] # Peter Luschny, Jan 13 2018

Formula

Integral representation as n-th moment of a positive function on a positive half-axis: a(n) = Integral_{x>=0} (x^n*exp(-2*x/27)*(BesselK(1/3, 2*x/27) + BesselK(2/3, 2*x/27))*(sqrt(3)/(27*Pi))).
From Carleman's criterion Sum_{n>=1} a(n)^(-1/(2*n)) = infinity the above solution of the Stieltjes moment problem is unique. - Karol A. Penson, Jan 13 2018
a(n) = n! * [x^n] 1/(1 - x)^(2*n+1). - Ilya Gutkovskiy, Jan 23 2018
Sum_{n>=1} 1/a(n) = A248760. - Amiram Eldar, Nov 15 2020

Extensions

a(15) from Harry J. Smith, Sep 12 2009

A248759 Decimal expansion of sum_{n>=1} n!/(3n)!.

Original entry on oeis.org

1, 6, 9, 4, 6, 1, 0, 2, 9, 0, 3, 2, 0, 7, 4, 1, 2, 8, 6, 4, 6, 9, 2, 6, 7, 0, 5, 2, 9, 8, 9, 9, 6, 3, 3, 3, 1, 6, 9, 7, 1, 2, 4, 2, 9, 9, 3, 7, 7, 4, 0, 8, 0, 0, 4, 2, 0, 5, 5, 4, 0, 2, 5, 1, 0, 0, 6, 3, 6, 1, 1, 8, 6, 6, 1, 1, 6, 0, 3, 2, 1, 4, 0, 2, 9, 9
Offset: 0

Views

Author

Clark Kimberling, Oct 13 2014

Keywords

Examples

			0.1694610290320741286469267052989963331697124299377408004205540251006361...
		

Crossrefs

Programs

  • Maple
    evalf(sum(n!/(3*n)!, n=1..infinity),120) # Vaclav Kotesovec, Oct 15 2014
  • Mathematica
    u = N[Sum[n!/(3 n)!, {n, 1, 200}], 120]
    RealDigits[u]  (* A248759 *)
    N[HypergeometricPFQ[{1}, {4/3, 5/3}, 1/27]/6,120] (* Vaclav Kotesovec, Oct 15 2014 *)
  • PARI
    suminf(n=1, n!/(3*n)!) \\ Michel Marcus, Oct 15 2014

A248761 Decimal expansion of sum_{n >= 1} 1/sqrt(n!).

Original entry on oeis.org

2, 4, 6, 9, 5, 0, 6, 3, 1, 4, 5, 2, 1, 0, 4, 7, 5, 6, 2, 4, 7, 5, 6, 3, 6, 7, 4, 4, 6, 6, 0, 1, 5, 0, 2, 5, 7, 6, 8, 9, 7, 5, 6, 1, 8, 3, 9, 9, 4, 9, 6, 9, 1, 9, 9, 6, 7, 7, 9, 2, 5, 7, 0, 1, 9, 7, 1, 8, 3, 5, 4, 8, 8, 0, 0, 3, 4, 0, 8, 8, 3, 4, 0, 3, 8, 6, 6, 2, 5, 0, 8, 4, 1, 2, 0, 0, 7, 1, 3, 5, 1, 7, 2, 6, 1
Offset: 1

Views

Author

Clark Kimberling, Oct 13 2014

Keywords

Examples

			2.46950631452104756247563674466015025768975618399496919967792570...
		

Crossrefs

Programs

  • Maple
    evalf(sum(1/sqrt(n!), n=1..infinity), 120); # Vaclav Kotesovec, Oct 19 2014
  • Mathematica
    u = N[Sum[1/Sqrt[n!], {n, 1, 200}], 100]
    RealDigits[u]  (* A248761 *)
  • PARI
    suminf(n=1, (1/sqrt(n!))) \\ Michel Marcus, Oct 18 2014
Showing 1-3 of 3 results.