cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A248800 a(n) = (2*n^2 + 3 + (-1)^n)/2.

Original entry on oeis.org

2, 2, 6, 10, 18, 26, 38, 50, 66, 82, 102, 122, 146, 170, 198, 226, 258, 290, 326, 362, 402, 442, 486, 530, 578, 626, 678, 730, 786, 842, 902, 962, 1026, 1090, 1158, 1226, 1298, 1370, 1446, 1522, 1602, 1682, 1766, 1850, 1938, 2026, 2118
Offset: 0

Views

Author

Paul Curtz, Oct 14 2014

Keywords

Comments

Numbers belonging to A016825: a(n) = A016825( A002620(n) ). - Bruno Berselli, Oct 15 2014
For n>1, a(n) is the number of row vectors of length 2n with entries in [1,n], first entry 1, with maximum inner distance. That is, vectors where the modular distance between adjacent entries is at least (n-2)/2. Modular distance is the minimum of remainders of (x - y) and (y - x) when dividing by n. Geometrically, this metric counts how far the integers mod n are from each other if 1 and n are adjacent as on a circle. - Omar Aceval Garcia, Jan 30 2021

Crossrefs

Programs

  • Magma
    [n^2+3/2+(-1)^n/2: n in [0..50]]; // Vincenzo Librandi, Oct 15 2014
    
  • Mathematica
    Table[n^2 + 3/2 + (-1)^n/2, {n, 0, 50}] (* Bruno Berselli, Oct 15 2014 *)
    CoefficientList[Series[2(x^3+x^2-x+1)/((1-x)^3 (x+1)), {x, 0, 50}], x] (* Vincenzo Librandi, Oct 15 2014 *)
    LinearRecurrence[{2,0,-2,1},{2,2,6,10},60] (* Harvey P. Dale, Apr 08 2019 *)
  • PARI
    Vec(-2*(x^3+x^2-x+1)/((x-1)^3*(x+1)) + O(x^100)) \\ Colin Barker, Oct 15 2014
    
  • Sage
    [(2*n^2 +3 +(-1)^n)/2 for n in (0..50)] # G. C. Greubel, Dec 14 2021

Formula

a(n) = A000290(n) + A000034(n+1) = 4*A002620(n) + 2.
a(n+1) = 2*A080827(n+1) = (n+2)^2 - A042964(n+1) = a(n) + 2*n + 1 -(-1)^n.
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4). - Colin Barker, Oct 15 2014
G.f.: 2*(1-x+x^2+x^3) / ((1-x)^3*(x+1)). - Colin Barker, Oct 15 2014
E.g.f.: cosh(x) + (1 + x + x^2)*exp(x). - G. C. Greubel, Dec 14 2021
a(2n) = A005899(n) for n > 0, a(2n+1) = A069894(n). - Omar Aceval Garcia, Dec 30 2021

Extensions

Typo in data fixed by Colin Barker, Oct 15 2014