cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A122803 Powers of -2: a(n) = (-2)^n.

Original entry on oeis.org

1, -2, 4, -8, 16, -32, 64, -128, 256, -512, 1024, -2048, 4096, -8192, 16384, -32768, 65536, -131072, 262144, -524288, 1048576, -2097152, 4194304, -8388608, 16777216, -33554432, 67108864, -134217728, 268435456, -536870912, 1073741824, -2147483648, 4294967296, -8589934592, 17179869184
Offset: 0

Views

Author

Keywords

Comments

The number -2 can be used as a base of numeration (see the Weisstein link). - Alonso del Arte, Mar 30 2014
Contribution from M. F. Hasler, Oct 21 2014: (Start)
This is the inverse binomial transform of A033999 = n->(-1)^n, and the binomial transform of A033999*A000244 = n->(-3)^n, see also A141413.
Prefixed with one 0, i.e., (0,1,-2,4,...) = -A033999*A131577, it is the binomial transform of (0, 1, -4, 13, -40, 121,...) = -A033999*A003462, and inverse binomial transform of (0,1,0,1,0,1,...) = A000035.
Prefixed with two 0's, i.e., (0,0,1,-2,4,-8,...), it is the binomial transform of (0,0,1,-5,18,-58,179,-543,...) (cf. A000340) and inverse binomial transform of (0,0,1,1,2,2,3,3,...) = A004526. (End)
Prefixed with three 0's, this is the inverse binomial difference of (0, 0, 0, 1, 2, 4, 6, 9, 12, 16,...) = concat(0, A002620), which has as successive differences (0, 0, 1, 1, 2, 2,...) = A004526, then (0, 1, 0, 1,...) = A000035, then (1, -1, 1, -1,...) = A033999, and then (-2)^k*A033999 with k=1,2,3,... - Paul Curtz, Oct 16 2014, edited by M. F. Hasler, Oct 21 2014
Stirling-Bernoulli transform of triangular numbers: 1, 3, 6, 10, 15, 21, 28, ... - Philippe Deléham, May 25 2015

Crossrefs

Programs

Formula

a(n) = (-2)^n = (-1)^n * 2^n.
a(n) = -2*a(n-1), n > 0; a(0) = 1. G.f.: 1/(1+2x). - Philippe Deléham, Nov 19 2008
Sum_{n >= 0} 1/a(n) = 2/3. - Jaume Oliver Lafont, Mar 01 2009
E.g.f.: 1/exp(2*x). - Arkadiusz Wesolowski, Aug 13 2012
a(n) = Sum_{k = 0..n} (-2)^(n-k)*binomial(n, k)*A030195(n+1). - R. J. Mathar, Oct 15 2012
G.f.: 1/(1+2x). A122803 = A033999 * A000079. - M. F. Hasler, Oct 21 2014
a(n) = Sum_{k = 0..n} A163626(n,k)*A000217(k+1). - Philippe Deléham, May 25 2015

A248825 a(n) = n^2 + 1 - (-1)^n.

Original entry on oeis.org

0, 3, 4, 11, 16, 27, 36, 51, 64, 83, 100, 123, 144, 171, 196, 227, 256, 291, 324, 363, 400, 443, 484, 531, 576, 627, 676, 731, 784, 843, 900, 963, 1024, 1091, 1156, 1227, 1296, 1371, 1444, 1523, 1600, 1683, 1764, 1851, 1936, 2027, 2116
Offset: 0

Views

Author

Paul Curtz, Oct 15 2014

Keywords

Comments

Also, A016742 and A164897 interleaved.
See the spiral in Example field of A054552: after 0, the sequence is given by the terms of the semidiagonals 4, 16, 36, 64, 100, ... and 3, 11, 27, 51, 83, ... sorted into ascending order.
Primes of the sequence are in A056899.

Crossrefs

Programs

  • Magma
    [n^2+1-(-1)^n: n in [0..60]]; // Vincenzo Librandi, Oct 16 2014
    
  • Mathematica
    Table[n^2 + 1 - (-1)^n, {n, 0, 60}] (* Vincenzo Librandi, Oct 16 2014 *)
    LinearRecurrence[{2,0,-2,1},{0,3,4,11},60] (* Harvey P. Dale, Jun 30 2019 *)
  • PARI
    vector(100,n,(n-1)^2+1+(-1)^n) \\ Derek Orr, Oct 15 2014
    
  • Sage
    [n^2+1-(-1)^n for n in (0..60)] # Bruno Berselli, Oct 16 2014

Formula

a(n) = a(-n) = 2*a(n-1) - 2*(n-3) + a(n-4).
a(n) = n^2 + A010673(n) = (n+1)^2 - A168277(n+1).
a(n+1) = A248800(n) + A042963(n+1) = a(n) + A166519(n).
a(n+2) = a(n) + 4*n.
a(n+5) = a(n-5) + A008602(n).
G.f.: x*(3 - 2*x + 3*x^2)/((1 + x)*(1 - x)^3). - Bruno Berselli, Oct 15 2014
Sum_{n>=1} 1/a(n) = Pi^2/24 + tanh(Pi/sqrt(2))*Pi/(4*sqrt(2)). - Amiram Eldar, Aug 21 2022

Extensions

Edited by Bruno Berselli, Oct 16 2014

A350453 Number of Latin squares of order 2n with maximum inner distance with fixed entry 1 in cell (1,1).

Original entry on oeis.org

1, 144, 112, 340, 696, 1468, 2528, 4388, 6760, 10444, 14928, 21364, 28952, 39260, 51136, 66628, 84168, 106348, 131120, 161684, 195448, 236284, 280992, 334180, 391976, 459788, 533008, 617908, 709080, 813724, 925568, 1052804, 1188232, 1341100, 1503216, 1684948
Offset: 1

Views

Author

Omar Aceval Garcia, Dec 31 2021

Keywords

Comments

The inner distance of a matrix with entries in [1,n] is the minimum of distances between vertically or horizontally adjacent entries. For example, every Latin square of order 2, 3, or 4 has inner distance 1, since there are consecutive integers which are adjacent. The distance between x and y in [1,n] with x < y is the minimum of y - x and n + x - y.

Examples

			For example there are 144 Latin squares of order 4 (with a 1 in the top left), all of which have maximum inner distance. There are only 112 such Latin squares of order 6, 340 of order 8, etc.
Every Latin square of order 4 by default has the maximum inner distance; the same is not true for any order higher than 4, which may explain why a(2) > a(3).
		

Crossrefs

Formula

a(n) = 4*n + ( n^2 + 3/2 + (1/2)*(-1)^n )^2 for n >= 3.
a(n) = 4*n + A248800(n)^2 for n >= 3.
For n >= 5, a(n) - a(n-2) = 8*n^3 - 24*n^2 + (44 + 4*(-1)^n)*n - 20 - 4*(-1)^n.
For n >= 7, a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4) + (48 + 16*(-1)^n)*(n-2).
G.f.: x*(1 + 142*x - 178*x^2 - 166*x^3 + 656*x^4 + 62*x^5 - 622*x^6 + 190*x^7 + 207*x^8 - 100*x^9)/((1 - x)^5*(1 + x)). - Stefano Spezia, Jan 01 2022

Extensions

More terms from Jinyuan Wang, Jan 01 2022
Showing 1-3 of 3 results.