cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A249739 The smallest prime whose square divides n, 1 if n is squarefree.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 2, 5, 1, 3, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 2, 7, 5, 1, 2, 1, 3, 1, 2, 1, 1, 1, 2, 1, 1, 3, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 5, 2, 1, 1, 1, 2, 3, 1, 1, 2, 1, 1, 1, 2, 1, 3, 1, 2, 1, 1, 1, 2, 1, 7, 3, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 3, 1, 1, 2
Offset: 1

Views

Author

Antti Karttunen, Nov 04 2014

Keywords

Comments

A249740 gives the corresponding largest prime.
If n belongs to A013929, then a(n)>1. - Robert G. Wilson v, Nov 16 2016

Crossrefs

Differs from A071773 and A249740 for the first time at n=36, where a(36) = 2, while A249740(36) = 3 and A071773(36) = 6.

Programs

  • Mathematica
    Table[If[SquareFreeQ@ n, 1, p = 2; While[! Divisible[n, p^2], p = NextPrime@ p]; p], {n, 120}] (* Michael De Vlieger, Nov 15 2016 *)
  • PARI
    a(n) = {f = factor(n/core(n)); vsq = select(x->((x%2) == 0), f[,2], 1); if (#vsq, f[vsq[1], 1], 1);} \\ Michel Marcus, Mar 11 2017
  • Scheme
    (define (A249739 n) (let loop ((n n) (p (A020639 n))) (cond ((= 1 n) n) ((zero? (modulo n (* p p))) p) (else (loop (/ n p) (A020639 (/ n p)))))))
    

Formula

a(n) = A020639(A003557(n)). - Amiram Eldar, Feb 11 2021

A249718 The largest prime whose square divides the first nonsquarefree number on row n of Pascal's triangle, 1 if all terms on that row are squarefree.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 2, 1, 2, 3, 3, 1, 2, 3, 2, 3, 2, 2, 3, 3, 2, 3, 2, 1, 2, 5, 5, 3, 2, 3, 2, 3, 2, 2, 2, 2, 3, 3, 2, 3, 2, 2, 2, 3, 2, 3, 3, 3, 2, 7, 5, 5, 2, 5, 3, 3, 2, 2, 2, 3, 2, 2, 2, 3, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 2, 5, 2, 5, 2, 3, 2, 3, 3, 3, 2, 3, 2, 3, 2, 2, 3, 3, 2, 3, 2, 3, 2, 2, 7, 3, 5, 5, 5, 5, 2, 2, 2, 5, 3, 3, 3, 3, 2, 2, 2, 2, 2, 3, 3, 3, 2
Offset: 0

Views

Author

Antti Karttunen, Nov 04 2014

Keywords

Crossrefs

Differs from A249717 for the first time at n=36, where a(36) = 3, while A249717(36) = 2.

Programs

Formula

a(n) = A249740(A249716(n)).

A046028 Largest multiple prime factor of the n-th nonsquarefree number (A013929).

Original entry on oeis.org

2, 2, 3, 2, 2, 3, 2, 2, 5, 3, 2, 2, 3, 2, 2, 3, 2, 7, 5, 2, 3, 2, 2, 3, 2, 2, 3, 5, 2, 2, 3, 2, 2, 3, 2, 2, 7, 3, 5, 2, 3, 2, 2, 3, 2, 11, 2, 5, 3, 2, 2, 3, 2, 2, 3, 7, 2, 5, 2, 3, 2, 2, 3, 2, 2, 13, 3, 2, 5, 2, 3, 2, 2, 3, 2, 7, 3, 5, 2, 3, 2, 2, 3, 2, 2, 5, 2, 2, 3, 2, 2, 11, 3, 2, 7, 2, 5, 3, 2, 2, 3
Offset: 1

Views

Author

Keywords

Crossrefs

Programs

  • Haskell
    a046028 n = a046028_list !! (n-1)
    a046028_list = f 1 where
       f x | null zs   = f (x + 1)
           | otherwise = (fst $ head zs) : f (x + 1)
           where zs = reverse $ filter ((> 1) . snd) $
                      zip (a027748_row x) (a124010_row x)
    -- Reinhard Zumkeller, Dec 29 2012
    
  • Mathematica
    Select[ FactorInteger[#]//Reverse, #[[2]]>1&, 1][[1, 1]]& /@ Select[ Range[300], !SquareFreeQ[#]& ] (* Jean-François Alcover, Nov 06 2012 *)
  • Python
    from math import isqrt
    from sympy import mobius, factorint
    def A046028(n):
        def f(x): return n+sum(mobius(k)*(x//k**2) for k in range(1, isqrt(x)+1))
        m, k = n, f(n)
        while m != k:
            m, k = k, f(k)
        s = factorint(m)
        return next(p for p in sorted(s,reverse=True) if s[p]>1) # Chai Wah Wu, Jul 22 2024

Formula

a(n) = A249740(A013929(n)). - Amiram Eldar, Feb 11 2021

A083730 Greatest prime^2 factor of n, or a(n)=1 for squarefree n.

Original entry on oeis.org

1, 1, 1, 4, 1, 1, 1, 4, 9, 1, 1, 4, 1, 1, 1, 4, 1, 9, 1, 4, 1, 1, 1, 4, 25, 1, 9, 4, 1, 1, 1, 4, 1, 1, 1, 9, 1, 1, 1, 4, 1, 1, 1, 4, 9, 1, 1, 4, 49, 25, 1, 4, 1, 9, 1, 4, 1, 1, 1, 4, 1, 1, 9, 4, 1, 1, 1, 4, 1, 1, 1, 9, 1, 1, 25, 4, 1, 1, 1, 4, 9, 1, 1, 4, 1, 1, 1, 4, 1, 9, 1, 4, 1, 1, 1, 4, 1, 49, 9
Offset: 1

Views

Author

Reinhard Zumkeller, Jun 14 2003

Keywords

Comments

Not multiplicative, for example a(4)*a(9) <> a(36). - R. J. Mathar, Oct 31 2011

Crossrefs

Programs

Formula

a(n) = A249740(n)^2. - Amiram Eldar, Feb 11 2021

A371601 Nonsquarefree numbers whose largest nonunitary prime divisor is smaller than their smallest unitary prime divisor, if it exists.

Original entry on oeis.org

4, 8, 9, 12, 16, 20, 24, 25, 27, 28, 32, 36, 40, 44, 45, 48, 49, 52, 56, 60, 63, 64, 68, 72, 76, 80, 81, 84, 88, 92, 96, 99, 100, 104, 108, 112, 116, 117, 120, 121, 124, 125, 128, 132, 135, 136, 140, 144, 148, 152, 153, 156, 160, 164, 168, 169, 171, 172, 175, 176
Offset: 1

Views

Author

Amiram Eldar, Mar 29 2024

Keywords

Comments

Subsequence of A283050 and first differs from it at n = 100: A283050(100) = 300 = 2^2 * 3 * 5^2 is not a term of this sequence.
Powerful numbers and nonpowerful numbers k such that 1 < A249740(k) < A277698(k), or equivalently, 1 < A006530(A057521(k)) < A020639(A055231(k)).
The asymptotic density of this sequence is (6/Pi^2) * Sum_{p prime} f(p)/(p^2-p+1) = 0.32131800923..., where f(p) = Product_{primes q <= p} (q^2-q+1)/(q^2-1).

Crossrefs

Programs

  • Mathematica
    q[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, Max[e] > 1 && (Min[e] > 1 || Max[e[[FirstPosition[e, 1][[1]] ;; -1]]] == 1)]; Select[Range[200], q]
  • PARI
    is(n) = {my(e = apply(x->if(x > 1, 2, 1), factor(n)[,2])); n > 1 && vecmax(e) > 1 && vecsort(e, , 4) == e;}
Showing 1-5 of 5 results.