cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A246277 Column index of n in A246278: a(1) = 0, a(2n) = n, a(2n+1) = a(A064989(2n+1)).

Original entry on oeis.org

0, 1, 1, 2, 1, 3, 1, 4, 2, 5, 1, 6, 1, 7, 3, 8, 1, 9, 1, 10, 5, 11, 1, 12, 2, 13, 4, 14, 1, 15, 1, 16, 7, 17, 3, 18, 1, 19, 11, 20, 1, 21, 1, 22, 6, 23, 1, 24, 2, 25, 13, 26, 1, 27, 5, 28, 17, 29, 1, 30, 1, 31, 10, 32, 7, 33, 1, 34, 19, 35, 1, 36, 1, 37, 9, 38, 3, 39, 1, 40, 8, 41, 1, 42
Offset: 1

Views

Author

Antti Karttunen, Aug 21 2014

Keywords

Comments

If n >= 2, n occurs in column a(n) of A246278.
By convention, a(1) = 0 because 1 does not occur in A246278.

Crossrefs

Terms of A348717 halved. A305897 is the restricted growth sequence transform.
Positions of terms 1 .. 8 in this sequence are given by the following sequences: A000040, A001248, A006094, A030078, A090076, A251720, A090090, A030514.
Cf. A078898 (has the same role with array A083221 as this sequence has with A246278).
This sequence is also used in the definition of the following permutations: A246274, A246276, A246675, A246677, A246683, A249815, A249817 (A249818), A249823, A249825, A250244, A250245, A250247, A250249.
Also in the definition of arrays A249821, A251721, A251722.
Sum of prime indices of a(n) is A359358(n) + A001222(n) - 1, cf. A326844.
A112798 lists prime indices, length A001222, sum A056239.

Programs

  • Mathematica
    a246277[n_Integer] := Module[{f, p, a064989, a},
      f[x_] := Transpose@FactorInteger[x];
      p[x_] := Which[
        x == 1, 1,
        x == 2, 1,
        True, NextPrime[x, -1]];
      a064989[x_] := Times @@ Power[p /@ First[f[x]], Last[f[x]]];
      a[1] = 0;
      a[x_] := If[EvenQ[x], x/2, NestWhile[a064989, x, OddQ]/2];
    a/@Range[n]]; a246277[84] (* Michael De Vlieger, Dec 19 2014 *)
  • PARI
    A064989(n) = {my(f); f = factor(n); if((n>1 && f[1,1]==2), f[1,2] = 0); for (i=1, #f~, f[i,1] = precprime(f[i,1]-1)); factorback(f)};
    A246277(n) = { if(1==n, 0, while((n%2), n = A064989(n)); (n/2)); };
    
  • PARI
    A246277(n) = if(1==n, 0, my(f = factor(n), k = primepi(f[1,1])-1); for (i=1, #f~, f[i,1] = prime(primepi(f[i,1])-k)); factorback(f)/2); \\ Antti Karttunen, Apr 30 2022
    
  • Python
    from sympy import factorint, prevprime
    from operator import mul
    from functools import reduce
    def a064989(n):
        f=factorint(n)
        return 1 if n==1 else reduce(mul, [1 if i==2 else prevprime(i)**f[i] for i in f])
    def a(n): return 0 if n==1 else n//2 if n%2==0 else a(a064989(n))
    print([a(n) for n in range(1, 101)]) # Indranil Ghosh, Jun 15 2017
  • Scheme
    ;; two different variants, the second one employing memoizing definec-macro)
    (define (A246277 n) (if (= 1 n) 0 (let loop ((n n)) (if (even? n) (/ n 2) (loop (A064989 n))))))
    (definec (A246277 n) (cond ((= 1 n) 0) ((even? n) (/ n 2)) (else (A246277 (A064989 n)))))
    

Formula

a(1) = 0, a(2n) = n, a(2n+1) = a(A064989(2n+1)) = a(A064216(n+1)). [Cf. the formula for A252463.]
Instead of the equation for a(2n+1) above, we may write a(A003961(n)) = a(n). - Peter Munn, May 21 2022
Other identities. For all n >= 1, the following holds:
For all w >= 0, a(p_{i} * p_{j} * ... * p_{k}) = a(p_{i+w} * p_{j+w} * ... * p_{k+w}).
For all n >= 2, A001222(a(n)) = A001222(n)-1. [a(n) has one less prime factor than n. Thus each semiprime (A001358) is mapped to some prime (A000040), etc.]
For all n >= 2, a(n) = A078898(A249817(n)).
For semiprimes n = p_i * p_j, j >= i, a(n) = A000040(1+A243055(n)) = p_{1+j-i}.
a(n) = floor(A348717(n)/2). - Antti Karttunen, Apr 30 2022
If n has prime factorization Product_{i=1..k} prime(x_i), then a(n) = Product_{i=2..k} prime(x_i-x_1+1). The opposite version is A358195, prime indices A358172, even bisection A241916. - Gus Wiseman, Dec 29 2022

A083221 Sieve of Eratosthenes arranged as an array and read by antidiagonals as A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), ...

Original entry on oeis.org

2, 4, 3, 6, 9, 5, 8, 15, 25, 7, 10, 21, 35, 49, 11, 12, 27, 55, 77, 121, 13, 14, 33, 65, 91, 143, 169, 17, 16, 39, 85, 119, 187, 221, 289, 19, 18, 45, 95, 133, 209, 247, 323, 361, 23, 20, 51, 115, 161, 253, 299, 391, 437, 529, 29, 22, 57, 125, 203, 319, 377, 493, 551, 667
Offset: 2

Views

Author

Yasutoshi Kohmoto, Jun 05 2003

Keywords

Comments

This is permutation of natural numbers larger than 1.
From Antti Karttunen, Dec 19 2014: (Start)
If we assume here that a(1) = 1 (but which is not explicitly included because outside of the array), then A252460 gives an inverse permutation. See also A249741.
For navigating in this array:
A055396(n) gives the row number of row where n occurs, and A078898(n) gives its column number, both starting their indexing from 1.
A250469(n) gives the number immediately below n, and when n is an odd number >= 3, A250470(n) gives the number immediately above n. If n is a composite, A249744(n) gives the number immediately left of n.
First cube of each row, which is {the initial prime of the row}^3 and also the first number neither a prime or semiprime, occurs on row n at position A250474(n).
(End)
The n-th row contains the numbers whose least prime factor is the n-th prime: A020639(T(n,k)) = A000040(n). - Franklin T. Adams-Watters, Aug 07 2015

Examples

			The top left corner of the array:
   2,   4,   6,    8,   10,   12,   14,   16,   18,   20,   22,   24,   26
   3,   9,  15,   21,   27,   33,   39,   45,   51,   57,   63,   69,   75
   5,  25,  35,   55,   65,   85,   95,  115,  125,  145,  155,  175,  185
   7,  49,  77,   91,  119,  133,  161,  203,  217,  259,  287,  301,  329
  11, 121, 143,  187,  209,  253,  319,  341,  407,  451,  473,  517,  583
  13, 169, 221,  247,  299,  377,  403,  481,  533,  559,  611,  689,  767
  17, 289, 323,  391,  493,  527,  629,  697,  731,  799,  901, 1003, 1037
  19, 361, 437,  551,  589,  703,  779,  817,  893, 1007, 1121, 1159, 1273
  23, 529, 667,  713,  851,  943,  989, 1081, 1219, 1357, 1403, 1541, 1633
  29, 841, 899, 1073, 1189, 1247, 1363, 1537, 1711, 1769, 1943, 2059, 2117
  ...
		

Crossrefs

Transpose of A083140.
One more than A249741.
Inverse permutation: A252460.
Column 1: A000040, Column 2: A001248.
Row 1: A005843, Row 2: A016945, Row 3: A084967, Row 4: A084968, Row 5: A084969, Row 6: A084970.
Main diagonal: A083141.
First semiprime in each column occurs at A251717; A251718 & A251719 with additional criteria. A251724 gives the corresponding semiprimes for the latter. See also A251728.
Permutations based on mapping numbers between this array and A246278: A249817, A249818, A250244, A250245, A250247, A250249. See also: A249811, A249814, A249815.
Also used in the definition of the following arrays of permutations: A249821, A251721, A251722.

Programs

  • Mathematica
    lim = 11; a = Table[Take[Prime[n] Select[Range[lim^2], GCD[# Prime@ n, Product[Prime@ i, {i, 1, n - 1}]] == 1 &], lim], {n, lim}]; Flatten[Table[a[[i, n - i + 1]], {n, lim}, {i, n}]] (* Michael De Vlieger, Jan 04 2016, after Yasutoshi Kohmoto at A083140 *)

Extensions

More terms from Hugo Pfoertner, Jun 13 2003

A249817 Permutation of natural numbers: a(1) = 1, a(n) = A083221(A055396(n),A246277(n)).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 27, 22, 23, 24, 25, 26, 21, 28, 29, 30, 31, 32, 39, 34, 35, 36, 37, 38, 63, 40, 41, 42, 43, 44, 33, 46, 47, 48, 49, 50, 75, 52, 53, 54, 65, 56, 99, 58, 59, 60, 61, 62, 57, 64, 95, 66, 67, 68, 111, 70, 71, 72, 73, 74, 51, 76, 77, 78, 79, 80, 45, 82, 83, 84, 155, 86, 135
Offset: 1

Views

Author

Antti Karttunen, Nov 06 2014

Keywords

Comments

a(n) tells which number in square array A083221 (the sieve of Eratosthenes) is at the same position where n is in array A246278. As both arrays have even numbers as their topmost row and primes as their leftmost column, both sequences are among the fixed points of this permutation.
Equally: a(n) tells which number in array A083140 is at the same position where n is in the array A246279, as they are the transposes of above two arrays.

Crossrefs

Inverse: A249818.
There are three different "deep" versions of this permutation, recursing on values of A055396(n) and/or A246277(n), namely: A250245, A250247 and A250249.
Other similar or related permutations: A249815.
Differs from its inverse A249818 for the first time at n=33, where a(33) = 39, while A249818(33) = 45.

Programs

  • Mathematica
    lim = 87; a083221 = Table[Take[Prime[n] Select[Range[Ceiling[lim/2]^2], GCD[# Prime@ n, Product[Prime@ i, {i, 1, n - 1}]] == 1 &], Ceiling[lim/2]], {n, Ceiling[lim/2]}]; a055396[n_] PrimePi[FactorInteger[n][[1, 1]]]; a246277[n_] := Which[n == 1, 0, EvenQ@ n, n/2, True, a246277[Times @@ Power[Which[# == 1, 1, # == 2, 1, True, NextPrime[#, -1]] & /@ First@ Transpose@ FactorInteger@ n, Last@ Transpose@ FactorInteger@ n]]]; Table[a083221[[a055396@ n, a246277@ n]], {n, 2, lim}] (* Michael De Vlieger, Jan 04 2016, after Jean-François Alcover at A055396 and Yasutoshi Kohmoto at A083140 *)
  • Scheme
    (define (A249817 n) (if (= 1 n) n (A083221bi (A055396 n) (A246277 n)))) ;; Code for A083221bi given in A083221
    ;; Alternative version:
    (define (A249817 n) (if (= 1 n) n (A083221bi (A055396 n) (A249821bi (A055396 n) (A078898 n))))) ;; Code for A249821bi given in A249821.

Formula

a(1) = 1, a(n) = A083221(A055396(n), A246277(n)).
a(1) = 1, a(n) = A083221(A055396(n), A249821(A055396(n), A078898(n))).
As a composition of other permutations:
a(1) = 1, and for n > 1, a(n) = 1 + A249815(n-1).
Other identities. For all n >= 1:
a(A005843(n)) = A005843(n) and a(A000040(n)) = A000040(n). [Fixes even numbers and primes, among other numbers. Cf. comments above].
A020639(a(n)) = A020639(n) and A055396(a(n)) = A055396(n). [Preserves the smallest prime factor of n].

A250244 Permutation of natural numbers: a(n) = A249741(A055396(n+1), a(A246277(n+1))).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 26, 21, 22, 23, 24, 25, 20, 27, 28, 29, 30, 31, 38, 33, 34, 35, 36, 37, 62, 51, 40, 41, 42, 43, 32, 45, 46, 47, 48, 49, 74, 39, 52, 53, 64, 55, 98, 57, 58, 59, 60, 61, 56, 75, 94, 65, 66, 67, 110, 69, 70, 71, 72, 73, 50, 123, 76, 101, 78, 79, 44, 81, 82, 83, 154, 85, 134, 63, 88, 89
Offset: 1

Views

Author

Antti Karttunen, Nov 16 2014

Keywords

Comments

This is a "more recursed" variant of A249815. Preserves the parity of n.

Crossrefs

Inverse: A250243.
Similar or related permutations: A246683, A249814, A250245.
Differs from A249816 and A250243 for the first time at n=32, where a(32) = 38, while A249816(32) = A250243(32) = 44.
Differs from the "shallow variant" A249815 for the first time at n=39, where a(39) = 51, while A249815(39) = 39

Formula

a(n) = A249741(A055396(n+1), a(A246277(n+1))).
As a composition of other permutations:
a(n) = A249814(A246683(n)).
Other identities. For all n >= 1, the following holds:
a(n) = (1+a((2*n)-1)) / 2. [The odd bisection from a(1) onward with one added and then halved gives the sequence back.]
a(A006093(n)) = A006093(n). [Primes minus one are among the fixed points].

A249811 Permutation of natural numbers: a(n) = A249741(A001511(n), A003602(n)).

Original entry on oeis.org

1, 2, 3, 4, 5, 8, 7, 6, 9, 14, 11, 24, 13, 20, 15, 10, 17, 26, 19, 34, 21, 32, 23, 48, 25, 38, 27, 54, 29, 44, 31, 12, 33, 50, 35, 64, 37, 56, 39, 76, 41, 62, 43, 84, 45, 68, 47, 120, 49, 74, 51, 94, 53, 80, 55, 90, 57, 86, 59, 114, 61, 92, 63, 16, 65, 98, 67, 124, 69, 104, 71, 118, 73, 110, 75, 144, 77, 116, 79, 142, 81
Offset: 1

Views

Author

Antti Karttunen, Nov 06 2014

Keywords

Comments

In the essence, a(n) tells which number in square array A249741 (the sieve of Eratosthenes minus 1) is at the same position where n is in array A135764, which is formed from odd numbers whose binary expansions are shifted successively leftwards on the successive rows. As the topmost row in both arrays is A005408 (odd numbers), they are fixed, i.e., a(2n+1) = 2n+1 for all n.
Equally: a(n) tells which number in array A114881 is at the same position where n is in the array A054582, as they are the transposes of above two arrays.

Crossrefs

Inverse: A249812.
Similar or related permutations: A249814 ("deep variant"), A246676, A249815, A114881, A209268, A249725, A249741.
Differs from A246676 for the first time at n=14, where a(14)=20, while
A246676(14)=26.

Programs

Formula

In the following formulas, A083221 and A249741 are interpreted as bivariate functions:
a(n) = A083221(A001511(n),A003602(n)) - 1 = A249741(A001511(n),A003602(n)).
As a composition of related permutations:
a(n) = A114881(A209268(n)).
a(n) = A249741(A249725(n)).
a(n) = A249815(A246676(n)).
Other identities. For all n >= 1 the following holds:
a(A000079(n-1)) = A006093(n).

A250243 Permutation of natural numbers: a(n) = A246275(A055396(n+1), a(A078898(n+1))).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 26, 21, 22, 23, 24, 25, 20, 27, 28, 29, 30, 31, 44, 33, 34, 35, 36, 37, 32, 51, 40, 41, 42, 43, 80, 45, 46, 47, 48, 49, 74, 39, 52, 53, 124, 55, 62, 57, 58, 59, 60, 61, 38, 87, 54, 65, 66, 67, 134, 69, 70, 71, 72, 73, 50, 63, 76, 101, 78, 79, 98, 81
Offset: 1

Views

Author

Antti Karttunen, Nov 16 2014

Keywords

Comments

This is a "more recursed" variant of A249816. Preserves the parity of n.

Crossrefs

Inverse: A250244.
Similar or related permutations: A246684, A249813, A250246.
Differs from A249815 and A250244 for the first time at n=32, where a(32) = 44, while A249815(32) = A250244(32) = 38.
Differs from "shallow variant" A249816 for the first time at n=39, where a(39) = 51, while A249816(39) = 39.

Formula

a(n) = A246275(A055396(n+1), a(A078898(n+1))).
As a composition of other permutations:
a(n) = A246684(A249813(n)).
Other identities. For all n >= 1, the following holds:
a(n) = (1+a((2*n)-1))/2. [The odd bisection from a(1) onward with one added and then halved gives the sequence back.]
a(A006093(n)) = A006093(n). [Primes minus one are among the fixed points].

A249816 Permutation of natural numbers: a(n) = A246275(A055396(n+1), A078898(n+1)).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 26, 21, 22, 23, 24, 25, 20, 27, 28, 29, 30, 31, 44, 33, 34, 35, 36, 37, 32, 39, 40, 41, 42, 43, 80, 45, 46, 47, 48, 49, 74, 51, 52, 53, 124, 55, 62, 57, 58, 59, 60, 61, 38, 63, 54, 65, 66, 67, 134, 69, 70, 71, 72, 73, 50, 75, 76, 77, 78, 79, 98, 81, 82, 83
Offset: 1

Views

Author

Antti Karttunen, Nov 06 2014

Keywords

Comments

a(n) tells which number in square array A246275 is at the same position where n is in array A249741, the sieve of Eratosthenes minus 1. As the topmost row in both arrays is A005408 (odd numbers), they are fixed, i.e. a(2n+1) = 2n+1 for all n. Also, as the leftmost column in both arrays is primes minus one (A006093), they are also among the fixed points.
Equally: a(n) tells which number in array A246273 is at the same position where n is in the array A114881, as they are the transposes of above two arrays.

Crossrefs

Inverse: A249815.
Similar or related permutations: A250243 ("deep variant"), A246676, A249812, A249818, A246273, A246275, A114881, A249741.
Differs from A249815 and A250244 for the first time at n=32, where a(32) = 44, while A249815(32) = A250244(32) = 38.
Differs from A250244 for the first time at n=39, where a(39) = 39, while A250243(39) = 51.

Programs

Formula

a(n) = A246275(A055396(n+1), A078898(n+1)).
As a composition of other permutations:
a(n) = A246676(A249812(n)).
a(n) = A249818(n+1) - 1.
Other identities. For all n >= 1:
a(A005408(n-1)) = A005408(n-1) and a(A006093(n)) = A006093(n). [Fixes odd numbers and precedents of primes. Cf. comments above].
Showing 1-7 of 7 results.