cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A083221 Sieve of Eratosthenes arranged as an array and read by antidiagonals as A(1,1), A(1,2), A(2,1), A(1,3), A(2,2), A(3,1), ...

Original entry on oeis.org

2, 4, 3, 6, 9, 5, 8, 15, 25, 7, 10, 21, 35, 49, 11, 12, 27, 55, 77, 121, 13, 14, 33, 65, 91, 143, 169, 17, 16, 39, 85, 119, 187, 221, 289, 19, 18, 45, 95, 133, 209, 247, 323, 361, 23, 20, 51, 115, 161, 253, 299, 391, 437, 529, 29, 22, 57, 125, 203, 319, 377, 493, 551, 667
Offset: 2

Views

Author

Yasutoshi Kohmoto, Jun 05 2003

Keywords

Comments

This is permutation of natural numbers larger than 1.
From Antti Karttunen, Dec 19 2014: (Start)
If we assume here that a(1) = 1 (but which is not explicitly included because outside of the array), then A252460 gives an inverse permutation. See also A249741.
For navigating in this array:
A055396(n) gives the row number of row where n occurs, and A078898(n) gives its column number, both starting their indexing from 1.
A250469(n) gives the number immediately below n, and when n is an odd number >= 3, A250470(n) gives the number immediately above n. If n is a composite, A249744(n) gives the number immediately left of n.
First cube of each row, which is {the initial prime of the row}^3 and also the first number neither a prime or semiprime, occurs on row n at position A250474(n).
(End)
The n-th row contains the numbers whose least prime factor is the n-th prime: A020639(T(n,k)) = A000040(n). - Franklin T. Adams-Watters, Aug 07 2015

Examples

			The top left corner of the array:
   2,   4,   6,    8,   10,   12,   14,   16,   18,   20,   22,   24,   26
   3,   9,  15,   21,   27,   33,   39,   45,   51,   57,   63,   69,   75
   5,  25,  35,   55,   65,   85,   95,  115,  125,  145,  155,  175,  185
   7,  49,  77,   91,  119,  133,  161,  203,  217,  259,  287,  301,  329
  11, 121, 143,  187,  209,  253,  319,  341,  407,  451,  473,  517,  583
  13, 169, 221,  247,  299,  377,  403,  481,  533,  559,  611,  689,  767
  17, 289, 323,  391,  493,  527,  629,  697,  731,  799,  901, 1003, 1037
  19, 361, 437,  551,  589,  703,  779,  817,  893, 1007, 1121, 1159, 1273
  23, 529, 667,  713,  851,  943,  989, 1081, 1219, 1357, 1403, 1541, 1633
  29, 841, 899, 1073, 1189, 1247, 1363, 1537, 1711, 1769, 1943, 2059, 2117
  ...
		

Crossrefs

Transpose of A083140.
One more than A249741.
Inverse permutation: A252460.
Column 1: A000040, Column 2: A001248.
Row 1: A005843, Row 2: A016945, Row 3: A084967, Row 4: A084968, Row 5: A084969, Row 6: A084970.
Main diagonal: A083141.
First semiprime in each column occurs at A251717; A251718 & A251719 with additional criteria. A251724 gives the corresponding semiprimes for the latter. See also A251728.
Permutations based on mapping numbers between this array and A246278: A249817, A249818, A250244, A250245, A250247, A250249. See also: A249811, A249814, A249815.
Also used in the definition of the following arrays of permutations: A249821, A251721, A251722.

Programs

  • Mathematica
    lim = 11; a = Table[Take[Prime[n] Select[Range[lim^2], GCD[# Prime@ n, Product[Prime@ i, {i, 1, n - 1}]] == 1 &], lim], {n, lim}]; Flatten[Table[a[[i, n - i + 1]], {n, lim}, {i, n}]] (* Michael De Vlieger, Jan 04 2016, after Yasutoshi Kohmoto at A083140 *)

Extensions

More terms from Hugo Pfoertner, Jun 13 2003

A135764 Distribute the natural numbers in columns based on the occurrence of "2" in each prime factorization; square array A(row,col) = 2^(row-1) * ((2*col)-1), read by descending antidiagonals.

Original entry on oeis.org

1, 3, 2, 5, 6, 4, 7, 10, 12, 8, 9, 14, 20, 24, 16, 11, 18, 28, 40, 48, 32, 13, 22, 36, 56, 80, 96, 64, 15, 26, 44, 72, 112, 160, 192, 128, 17, 30, 52, 88, 144, 224, 320, 384, 256, 19, 34, 60, 104, 176, 288, 448, 640, 768, 512, 21, 38, 68, 120, 208, 352, 576, 896, 1280, 1536, 1024, 23, 42, 76, 136, 240, 416, 704, 1152, 1792, 2560, 3072, 2048, 25, 46, 84, 152, 272, 480, 832, 1408, 2304, 3584, 5120, 6144, 4096, 27, 50, 92, 168, 304, 544, 960, 1664, 2816
Offset: 1

Views

Author

Alford Arnold, Nov 29 2007

Keywords

Comments

The array in A135764 is identical to the array in A054582 [up to the transposition and different indexing. - Clark Kimberling, Dec 03 2010; comment amended by Antti Karttunen, Feb 03 2015; please see the illustration in Example section].
The array gives a bijection between the natural numbers N and N^2. A more usual bijection is to take the natural numbers A000027 and write them in the usual OEIS square array format. However this bijection has the advantage that it can be formed by iterating the usual bijection between N and 2N. - Joshua Zucker, Nov 04 2011
The array can be used to determine the configurations of k-th Towers of Hanoi moves, by labeling odd row terms C,B,A,C,B,A,... and even row terms B,C,A,B,C,A,.... Then given k equal to or greater than term "a" in each n-th row, but less than the next row term, record the label A, B, or C for term "a". This denotes the peg position for the disc corresponding to the n-th row. For example, with k = 25, five discs are in motion since the binary for 25 = 11001, five bits. We find that 25 in row 5 is greater than 16 labeled C, but less than 48. Thus, disc 5 is on peg C. In the 4th row, 25 is greater than 24 (a C), but less than 40, so goes onto the C peg. Similarly, disc 3 is on A, 2 is on A, and disc 1 is on A. Thus, discs 2 and 3 are on peg A, while 1, 4, and 5 are on peg C. - Gary W. Adamson, Jun 22 2012
Shares with arrays A253551 and A254053 the property that A001511(n) = k for all terms n on row k and when going downward in each column, terms grow by doubling. - Antti Karttunen, Feb 03 2015
Let P be the infinite palindromic word having initial word 0 and midword sequence (1,2,3,4,...) = A000027. Row n of the array A135764 gives the positions of n-1 in S. ("Infinite palindromic word" is defined at A260390.) - Clark Kimberling, Aug 13 2015
The probability distribution series 1 = 2/3 + 4/15 + 16/255 + 256/65535 + ... + A001146(n-1)/A051179(n) governs the proportions of terms in A001511 from row n of the array. In A001511(1..15) there are ((2/3) * 15) = ten terms from row one of the array, ((4/15) * 15) = four terms from row two, and ((16/255) * 15) = one (rounded), giving one term from row three (a 4). - Gary W. Adamson, Dec 16 2021
From Gary W. Adamson, Dec 30 2021: (Start)
Subarrays representing the number of divisors of an integer can be mapped on the table. For 60, write the odd divisors on the top row: 1, 3, 5, 15. Since 60 has 12 divisors, let the left column equal 1, 2, 4, where 4 is the highest power of 2 dividing 60. Multiplying top row terms by left column terms, we get the result:
1 3 5 15
2 6 10 30
4 12 20 60. (End)

Examples

			The table begins
   1,  3,   5,   7,   9,  11,  13,  15,  17,  19,  21,  23, ...
   2,  6,  10,  14,  18,  22,  26,  30,  34,  38,  42,  46, ...
   4, 12,  20,  28,  36,  44,  52,  60,  68,  76,  84,  92, ...
   8, 24,  40,  56,  72,  88, 104, 120, 136, 152, 168, 184, ...
  16, 48,  80, 112, 144, 176, 208, 240, 272, 304, 336, 368, ...
  32, 96, 160, 224, 288, 352, 416, 480, 544, 608, 672, 736, ...
etc.
For n = 6, we have [A002260(6), A004736(6)] = [3, 1] (i.e., 6 corresponds to location 3,1 (row,col) in above table) and A(3,1) = A000079(3-1) * A005408(1-1) = 2^2 * 1 = 4.
For n = 13, we have [A002260(13), A004736(13)] = [3, 3] (13 corresponds to location 3,3 (row,col) in above table) and A(3,3) = A000079(3-1) * A005408(3-1) = 2^2 * 5 = 20.
For n = 23, we have [A002260(23), A004736(23)] = [2, 6] (23 corresponds to location 2,6) and A(2,6) = A000079(2-1) * A005408(6-1) = 2^1 * 11 = 22.
		

Crossrefs

Transpose: A054582.
Inverse permutation: A249725.
Column 1: A000079.
Row 1: A005408.
Cf. A001511 (row index), A003602 (column index, both one-based).
Related arrays: A135765, A253551, A254053, A254055.
Cf. also permutations A246675, A246676, A249741, A249811, A249812.
Cf. A260390.

Programs

  • Maple
    seq(seq(2^(j-1)*(2*(i-j)+1),j=1..i),i=1..20); # Robert Israel, Feb 03 2015
  • Mathematica
    f[n_] := Block[{i, j}, {1}~Join~Flatten@ Last@ Reap@ For[j = 1, j <= n, For[i = j, i > 0, Sow[2^(j - i - 1)*(2 i + 1)], i--], j++]]; f@ 10 (* Michael De Vlieger, Feb 03 2015 *)
  • PARI
    a(n) = {s = ceil((1 + sqrt(1 + 8*n)) / 2); r = n - binomial(s-1, 2) - 1;k = s - r - 2; 2^r * (2 * k + 1) } \\ David A. Corneth, Feb 05 2015
  • Scheme
    (define (A135764 n) (A135764bi (A002260 n) (A004736 n)))
    (define (A135764bi row col) (* (A000079 (- row 1)) (+ -1 col col)))
    ;; Antti Karttunen, Feb 03 2015
    

Formula

From Antti Karttunen, Feb 03 2015: (Start)
A(row, col) = 2^(row-1) * ((2*col)-1) = A000079(row-1) * A005408(col-1).
A(row,col) = A064989(A135765(row,A249746(col))).
A(row,col) = A(row+1,col)/2 [discarding the topmost row and halving the rest of terms gives the array back].
A(row,col) = A(row,col+1) - A000079(row) [discarding the leftmost column and subtracting 2^{row number} from the rest of terms gives the array back].
(End)
G.f.: ((2*x+1)*Sum_{i>=0} 2^i*x^(i*(i+1)/2) + 2*(1-2*x)*Sum_{i>=0} i*x^(i*(i+1)/2) + (1-6*x)*Sum_{i>=0} x^(i*(i+1)/2) - 1 - 2*x)*x/(1-2*x)^2. These sums are related to Jacobi theta functions. - Robert Israel, Feb 03 2015

Extensions

More terms from Sean A. Irvine, Nov 23 2010
Name amended and the illustration of array in the example section transposed by Antti Karttunen, Feb 03 2015

A249741 Sieve of Eratosthenes minus one: a(n) = A083221(n+1) - 1.

Original entry on oeis.org

1, 3, 2, 5, 8, 4, 7, 14, 24, 6, 9, 20, 34, 48, 10, 11, 26, 54, 76, 120, 12, 13, 32, 64, 90, 142, 168, 16, 15, 38, 84, 118, 186, 220, 288, 18, 17, 44, 94, 132, 208, 246, 322, 360, 22, 19, 50, 114, 160, 252, 298, 390, 436, 528, 28, 21, 56, 124, 202, 318, 376, 492, 550, 666, 840, 30, 23, 62, 144, 216, 340, 402, 526, 588, 712, 898, 960, 36, 25
Offset: 1

Views

Author

Antti Karttunen, Nov 15 2014

Keywords

Examples

			The top left corner of the array:
   1,   3,   5,    7,    9,   11,   13,   15,   17,   19,   21,   23,   25,
   2,   8,  14,   20,   26,   32,   38,   44,   50,   56,   62,   68,   74,
   4,  24,  34,   54,   64,   84,   94,  114,  124,  144,  154,  174,  184,
   6,  48,  76,   90,  118,  132,  160,  202,  216,  258,  286,  300,  328,
  10, 120, 142,  186,  208,  252,  318,  340,  406,  450,  472,  516,  582,
  12, 168, 220,  246,  298,  376,  402,  480,  532,  558,  610,  688,  766,
  16, 288, 322,  390,  492,  526,  628,  696,  730,  798,  900, 1002, 1036,
  18, 360, 436,  550,  588,  702,  778,  816,  892, 1006, 1120, 1158, 1272,
  22, 528, 666,  712,  850,  942,  988, 1080, 1218, 1356, 1402, 1540, 1632,
  28, 840, 898, 1072, 1188, 1246, 1362, 1536, 1710, 1768, 1942, 2058, 2116,
...
		

Crossrefs

Inverse: A249742.
Transpose: A114881.
Row 1: A005408, Column 1: A006093, Main diagonal: A249743.

Programs

Formula

a(n) = A083221(n+1) - 1.
As a composition of related permutations:
a(n) = A114881(A038722(n)).
a(n) = A249811(A135764(n)).

A249814 "Mountains of Eratosthenes" permutation: a(1) = 1, a(n) = A249741(A001511(n), a(A003602(n))).

Original entry on oeis.org

1, 2, 3, 4, 5, 8, 7, 6, 9, 14, 15, 24, 13, 20, 11, 10, 17, 26, 27, 34, 29, 44, 47, 48, 25, 38, 39, 54, 21, 32, 19, 12, 33, 50, 51, 64, 53, 80, 67, 76, 57, 86, 87, 114, 93, 140, 95, 120, 49, 74, 75, 94, 77, 116, 107, 90, 41, 62, 63, 84, 37, 56, 23, 16, 65, 98, 99, 124, 101, 152, 127, 118, 105, 158, 159, 204, 133, 200, 151, 142
Offset: 1

Views

Author

Antti Karttunen, Nov 06 2014

Keywords

Comments

This sequence is a "recursed variant" of A249811.
From Antti Karttunen, Jan 18 2015: (Start)
This can be viewed as an entanglement or encoding permutation where the complementary pairs of sequences to be interwoven together are even and odd numbers (A005843/A005408) which are entangled with another complementary pair: even numbers in the order they appear in A253886 and odd numbers in their usual order: (A253886/A005408).
From the above follows also that this sequence can be represented as a binary tree. Each child to the left is obtained by doubling the parent and subtracting one, and each child to the right is obtained by applying A253886 to the parent:
1
|
...................2...................
3 4
5......../ \........8 7......../ \........6
/ \ / \ / \ / \
/ \ / \ / \ / \
/ \ / \ / \ / \
9 14 15 24 13 20 11 10
17 26 27 34 29 44 47 48 25 38 39 54 21 32 19 12
(End)
For listening I recommend some (mostly) percussive MIDI-instrument and the pitch offset set to at least 29 and the tempo (rate) to about 60. - Antti Karttunen, Feb 17 2015

Crossrefs

Inverse: A249813.
Similar or related permutations: A246684, A249811, A250244, A252755.
Compare also the scatterplot of this sequence to the graphs of A252755 and A246684.
Differs from A246684 for the first time at n=14, where a(14) = 20, while A246684(14) = 26.

Formula

In the following formulas, A083221 and A249741 are interpreted as bivariate functions:
a(1) = 1, for n>1: a(n) = A083221(A001511(n), a(A003602(n))) - 1 = A249741(A001511(n), a(A003602(n))).
a(1) = 1, a(2n) = A253886(a(n)), a(2n+1) = (2*a(n+1))-1. - Antti Karttunen, Jan 18 2015
As a composition of other permutations:
a(n) = A250244(A246684(n)).
Other identities. For all n >= 1, the following holds:
a(n) = (1+a((2*n)-1))/2. [The odd bisection from a(1) onward with one added and then halved gives the sequence back.]
a(A000079(n-1)) = A006093(n).

A249725 Inverse permutation to A135764.

Original entry on oeis.org

1, 3, 2, 6, 4, 5, 7, 10, 11, 8, 16, 9, 22, 12, 29, 15, 37, 17, 46, 13, 56, 23, 67, 14, 79, 30, 92, 18, 106, 38, 121, 21, 137, 47, 154, 24, 172, 57, 191, 19, 211, 68, 232, 31, 254, 80, 277, 20, 301, 93, 326, 39, 352, 107, 379, 25, 407, 122, 436, 48, 466, 138, 497, 28, 529, 155, 562, 58, 596, 173, 631, 32, 667, 192, 704, 69, 742, 212, 781, 26, 821, 233, 862, 81
Offset: 1

Views

Author

Antti Karttunen, Nov 15 2014

Keywords

Crossrefs

Inverse: A135764.
Similar or related permutations: A209268, A246276, A246676, A249742, A249811.

Programs

Formula

a(n) = 1 + (((A003602(n)+A007814(n))^2 + A007814(n) - A003602(n))/2).
As a composition of other permutations:
a(n) = A249742(A249811(n)).
a(n) = A246276(A246676(n)).
Other identities. For all n >= 0 the following holds:
a(A005408(n)) = A000124(n). [Maps odd numbers to central polygonal numbers].
a(A000079(n)) = A000217(n+1). [Maps powers of two to triangular numbers].

A249815 Permutation of natural numbers: a(n) = A249741(A055396(n+1), A246277(n+1)).

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 26, 21, 22, 23, 24, 25, 20, 27, 28, 29, 30, 31, 38, 33, 34, 35, 36, 37, 62, 39, 40, 41, 42, 43, 32, 45, 46, 47, 48, 49, 74, 51, 52, 53, 64, 55, 98, 57, 58, 59, 60, 61, 56, 63, 94, 65, 66, 67, 110, 69, 70, 71, 72, 73, 50, 75, 76, 77, 78, 79, 44, 81, 82, 83
Offset: 1

Views

Author

Antti Karttunen, Nov 06 2014

Keywords

Comments

a(n) tells which number in square array A249741 (the sieve of Eratosthenes minus 1) is at the same position where n is in array A246275. As the topmost row in both arrays is A005408 (odd numbers), they are fixed, i.e. a(2n+1) = 2n+1 for all n. Also, as the leftmost column in both arrays is primes minus one (A006093), they are also among the fixed points.
Equally: a(n) tells which number in array A114881 is at the same position where n is in the array A246273, as they are the transposes of above two arrays.

Crossrefs

Inverse: A249816
Similar or related permutations: A250244 ("deep variant"), A246675, A249811, A249817, A246273, A246275, A114881, A249741.
Differs from A249816 and A250243 for the first time at n=32, where a(32) = 38, while A249816(32) = A250243(32) = 44.
Differs from A250244 for the first time at n=39, where a(39) = 39, while A250244(39) = 51.

Programs

Formula

a(n) = A249741(A055396(n+1), A246277(n+1)).
As a composition of other permutations:
a(n) = A249811(A246675(n)).
a(n) = A249817(n+1) - 1.
Other identities. For all n >= 1:
a(A005408(n-1)) = A005408(n-1) and a(A006093(n)) = A006093(n). [Fixes odd numbers and precedents of primes. Cf. comments above].

A249812 Permutation of natural numbers: a(n) = A000079(A055396(n+1)-1) * ((2*A078898(n+1))-1).

Original entry on oeis.org

1, 2, 3, 4, 5, 8, 7, 6, 9, 16, 11, 32, 13, 10, 15, 64, 17, 128, 19, 14, 21, 256, 23, 12, 25, 18, 27, 512, 29, 1024, 31, 22, 33, 20, 35, 2048, 37, 26, 39, 4096, 41, 8192, 43, 30, 45, 16384, 47, 24, 49, 34, 51, 32768, 53, 28, 55, 38, 57, 65536, 59, 131072, 61, 42, 63, 36, 65, 262144, 67, 46, 69, 524288, 71, 1048576, 73, 50, 75, 40, 77, 2097152, 79, 54, 81, 4194304, 83, 44
Offset: 1

Views

Author

Antti Karttunen, Nov 06 2014

Keywords

Comments

In the essence, a(n) tells which number in the array A135764 is at the same position where n is in the array A249741, the sieve of Eratosthenes minus 1. As the topmost row in both arrays is A005408 (odd numbers), they are fixed, i.e., a(2n+1) = 2n+1 for all n.
Equally: a(n) tells which number in array A054582 is at the same position where n is in the array A114881, as they are the transposes of above two arrays.

Crossrefs

Inverse: A249811.
Similar or related permutations: A249813 ("deep variant"), A246675, A249816, A054582, A114881, A250252, A135764, A249741, A249742.
Differs from A246675 for the first time at n=20, where a(20)=14, while A246675(20)=18.

Programs

Formula

a(n) = A000079(A055396(n+1)-1) * ((2*A078898(n+1))-1).
As a composition of related permutations:
a(n) = A054582(A250252(n)-1).
a(n) = A135764(A249742(n)).
a(n) = A246675(A249816(n)).
Other identities. For all n >= 1 the following holds:
a(A006093(n)) = A000079(n-1).
Showing 1-7 of 7 results.